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Abstract. Acquiring knowledge about object interactions and affor-
dances can facilitate scene understanding and human-robot collabo-
ration tasks. As humans tend to use objects in many different ways
depending on the scene and the objects’ availability, learning object
affordances in everyday-life scenarios is a challenging task particu-
larly in the presence of an open set of interactions and objects.

We address the problem of affordance prediction for class-agnostic
objects with an open set of interactions; we achieve this by learning
similarities between object interactions in an unsupervised way and
thus inducing clusters of object affordances. A novel depth-informed
qualitative spatial representation is proposed for the construction of
the Activity Graphs (AGs) which abstract from the continuous rep-
resentation of spatio-temporal interactions in RGB-D videos. These
AGs are clustered to obtain groups of similar object affordances. Our
experiments in a real-world scenario do not impose any object or
scene constraints and demonstrate that our method handles object oc-
clusions and learns object affordance clusters with a high V-measure.

1 INTRODUCTION
In the literature, the meaning of the term affordance of an object
differs depending on the context. In robotic applications, e.g. robot
manipulation tasks, the definition of affordance is bound to the part
of a tool which can be afforded in a specific way, e.g. the handle
of a hammer has the affordance of ‘hold’ whereas the head has the
affordance of ‘hit’. In contrast, in human-object interaction recogni-
tion tasks, affordance is defined as the way an object can be utilized
by the human in a scene, e.g. if a human uses a cup for containing
something then the cup will have the affordance of ‘contain’. More-
over, any object may have more than one affordance as it depends on
the purpose it is being used for, e.g. a pizza box can have the affor-
dance of ‘contain’ when it is being utilized as a container of a pizza
or ‘support’ when is plays the role of a tray, and such multi-labelled
affording objects can be recognized by considering their interactions
with other objects.

In a human-robot collaboration scenario, acquiring knowledge of
the affordances of the objects in a scene is crucial for aiding the hu-
man, e.g. assisting the human when performing a physically hard
task. This becomes challenging when the scene comprises an open-
set of arbitrary objects and the affordance space enlarges. Moreover,
in human action prediction tasks, the affordances of the objects carry
useful information for the prediction of the future action, and are
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highly correlated to the rest of the objects the human interacts with.
Nevertheless, such knowledge is not easy to obtain as humans tend
to use the same object in different ways depending on the performed
task, thus changing its primary affordance.

Object affordances were first formally defined by J. Gibson [10];
however the concept of object affordances as it is understood in Com-
puter Science has not been explicitly defined in the literature causing
some confusion. For this purpose we propose the definition:

Definition 1 An affordance is a property of an object arising from
its interaction with another entity, i.e. agent, object. It is correlated
to the occurring interaction as every interaction exploits at least one
object affordance. An object may have multiple affordances based on
the various interactions it may have with other entities.

Based on this definition, and building on our previous work [30],
we address the problem of affordance prediction by exploiting pair-
wise object interactions through RGB-D video data. Hence, we rely
on the way objects are being utilized by the human agents in a
scene, allowing objects to support different kind of affordances at the
same time. We focus on learning groups of high-level object interac-
tions which take into account their spatio-temporal relations from ex-
tracted visual appearances. Graphs are able to capture high level in-
formation of relationships or even dynamic relational changes. Thus,
we represent these pair-wise object interactions through a high-level
graphical structure, the Activity Graph (AG), while abstracting from
the continuous spatio-temporal representation and acquiring depth-
informed qualitative spatial relations between object pairs.

Definition 1 states that “every interaction exploits at least one ob-
ject affordance”; affordances of objects are inferred from these high-
level graphs representing pair-wise object interactions. Affordance
clusters are formed in an unsupervised way by exploiting intra-class
graph similarity using a set Edit Distance (sED) measure. By clus-
tering graph structures, a hierarchical tree representation is produced
demonstrating their similarity. Since our approach is based on learn-
ing a high-level representation of interactions, it is not limited to any
number or kind of affordances, scenes, and objects.

To obtain a richer set of spatial relationships than those possible
from a sequence of purely 2D frames, we exploit the depth informa-
tion assuming the presence of RGB-D video data. The depth cues al-
low some inference about the morphology of the objects in the scene
and thus the way they can interact with other objects, e.g. ‘concave’
objects can act as containers.

Hence, the objectives of this work are:
• to propose a depth-informed set of qualitative relations which can

describe a wide variety of object configurations regarding a real-
world scenario as well as handling object occlusions, for detecting
effectively spatial relationships of object interactions



• to capture representations of object interactions from multiple ob-
ject affordances

• to evaluate our method on a challenging dataset which comprises
real-world scenario scenes with object occlusions.

2 RELATED WORK
Several methods have been proposed for detecting functional object
parts and their corresponding affordance labels. These works involve
the detection of object affordance parts by considering their visual
characteristics and their geometric features. One of the early works
in this direction focused in the detection of graspable object areas
by creating local visual descriptors of grasping points and estimating
the probability of the presence of a graspable object based on the
Bernoulli trial [19]. New approaches employ Convolutional Neural
Network (CNN) models to produce classes of functional object parts
from RGB data [22, 7, 27]. However, depth cues along with the RGB
information have demonstrated a greater detection accuracy in this
task [21, 20]. Additionally, incorporating knowledge about the scene
and context in which an object is being used boosts even more the
prediction accuracy of such system [33].

However, processing static visual information restricts the num-
ber of affordances assigned to an object to be the ones correlated
only with its visual features. For this purpose, many works have con-
sidered exploiting the correlation of human actions and the detected
objects in a scene [11, 32, 8]. Depending on the human-object in-
teraction being held, a different affordance is detected. These works
demonstrate that by fusing knowledge about the scenario in which an
interaction takes place enforces the prediction of affordances, how-
ever limits the generalizability across different domains.

To accommodate domain independence, high-level graph repre-
sentations of interactions are being employed. Recent works intro-
duce such graphical structures in synthetic indoor environments fo-
cusing on the prediction of furniture areas the human is most likely to
interact with [25], whereas outdoors scenes are examined by consid-
ering the behavior of moving objects around them [31]. Nevertheless,
these approaches only consider a one-to-one mapping of affordances
and objects, hence the objects are bound to a single kind of interac-
tion, not permitting multi-labelled object affordances.

Though graphical structures are able to retain high-level informa-
tion about the interactions in the scene, their structure might be the
cause of domain restriction [2, 1, 24, 23]. For this purpose, qualitative
spatio-temporal relations are exploited for their construction [28].

One of the fundamental obstacles in these works is object oc-
clusion. To mitigate this problem, the tracks and visual appear-
ances and disappearances of non-deformable objects are considered
[16, 15, 18]. However, these approaches are restricted to the detection
of a single object affordance, i.e. containment, and no consideration
of non-containment relation due to occlusion is handled.

In this work, we propose a novel method for predicting object af-
fordances in real-world scenarios in the presence of object occlu-
sions. Different from any other published work, our approach is not
restrained to a predefined set of objects, interactions, or scenes. High-
level graphs assist in considering an open-set of interactions and no
object labels restrict the generalizability of our method. Our experi-
ments demonstrate how, without any supervision, we acquire homo-
geneous and complete clusters of object affordances by exploiting
qualitative information about their interactions and their shapes.

3 BACKGROUND
Relational graph structures represent high-level information by ab-
stracting from the continuous space of the exploited relations of the
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Figure 1. Qualitative spatial relations are extracted from detected episodes
in the temporal domain of a video. Activity Graphlets are constructed using

these qualitative spatio-temporal relations for individual detected objects
(encircled) in the scene describing their interaction with another object.

graph entities. From definition 1: “It (an affordance) is correlated to
the occurring interaction as every interaction exploits at least one
object affordance.”, hence an object-object interaction reveals each
object’s affordances. Relational graph structures of pair-wise object
interactions aid in representing an open set of interactions. For this
purpose, in this work we exploit the representation of Activity Graphs
(AGs) [29] which are relational graphs that describe the interaction
between entities, i.e. objects, of a scene by considering their qualita-
tive spatio-temporal relationships.

An AG consists of three layers of vertices, where each layer com-
prises a single type of nodes and only nodes in adjacent layers can be
connected with each other. The three layers of anAG are: the object,
the spatial, and the temporal layers. The object layer contains the set
of vertices of the objects or entities which interact (Vobj), the spatial
layer consist of vertices with the spatial relations (Vspat) which de-
scribe the spatial interactions of the entities in Vobj , and the temporal
information of the occurrences between the spatial relations exists in
the vertices of the temporal layer (Vtemp).

Qualitative DiSR spatial relations, introduced in Section 5, are em-
ployed to describe the spatial relationships of objects (Vspat), whilst
Allen’s temporal algebra [3] is exploited to express the temporal rela-
tionships between the spatial relations (Vtemp). This qualitative tem-
poral set consist of the relations: ‘before’ (<, >), ‘meets’ (m, mi),
‘overlaps’, (o, oi), ‘starts’ (s, si), ‘during’ (d, di), ‘finishes’ (f, fi),
and ‘equals’ (=). The set of qualitative spatial relations for every
interaction is obtained from the presence of episodes. An episode is
defined as the maximum period of time where a single spatial relation
between two entities holds, while a different spatial relation occurs
before and after the defined time period. By considering episodes in-
stead of individual frames for detecting the spatial relationships of
the objects, our method can effectively generalize across different
video fps and is not video length dependent.

As many affordances are revealed by the pair-wise interactions of
the objects, we define an Activity Graphlet (AGraphlet ) as a sub-
graph of an AG which carries the spatial and temporal information
(V

′
spat, V

′
temp) of every pair of objects (V

′
obj) in a video scene (Fig.

1). Every graph describes an object’s interaction, hence two interact-
ing objects have inverse graphs assigned to them.

4 OVERVIEW
The proposed approach exploits depth-informed qualitative informa-
tion to solve the problem of object affordance prediction. Our method
is based on unsupervised learning of detected object interactions.
A hierarchical clustering is employed for this purpose, described in
Section 6, exploiting high-level interaction representations and pro-
ducing a dendrogram of object affordances. AGraphlets are used
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Figure 2. DiSR representations in 3D space.

as a high-level representation of object interactions, thus achieving
a generalization across various scenarios. To effectively represent
qualitative spatial relationships between objects we describe in Sec-
tion 5 a novel set of depth-informed spatial relationships which infers
more accurate object relative relations. Such qualitative spatial infor-
mation constitutes the spatial layer of an AGraphlet .

Objects of interest are localized in the input frames of a video by
utilizing any visual-based object detector algorithm which provides
class-agnostic object bounding boxes.

5 DEPTH-INFORMED RELATIONS
Though simple and discrete spatial interactions, e.g. ‘touching’ and
‘not touching’ in 2D space, are captured effectively in the 2D image
plane, the determination of more complex spatial relationships, e.g.
‘supporting’, ‘containing’, is challenging, especially when consider-
ing a cluttered scene. To address this limitation we propose a depth-
informed set of qualitative spatial relationships which take into ac-
count the object’s convexity-type. The object’s convexity-type carries
information about the object’s affordance, hence the kind of interac-
tion which can hold between that object and another. For example, a
concave object, due to its concavity, can afford the relation of contain
by playing the role of the container, whilst an object interacting in a
specific way with an object which has the affordance container, can
be regarded as a containee.

The spatial information employed to describe the object interac-
tions in the spatial domain, consists of a discrete set of spatial re-
lations that can describe effectively any spatial configuration of the
objects in a scene. These depth-informed interactions are exploited
for the construction of more accurate qualitative graphical structures,
achieving more homogeneous and complete affordance clusters.

5.1 Formulation of DiSR
We propose the set of Depth-informed Spatial Relations (DiSR)
(Fig. 2): ‘supports’ (Sup, Supi), ‘contains’ (Cont, Conti), ‘adja-
cent’ (Adj), ‘not interacting’(NI). The proposed set takes into ac-
count the 2.5D information of the detected objects rather than only
the 2D projections in the camera plane as in the primary definition of
the RCC [26, 6]. The depth information is considered for reasoning
about the spatial relative positions of objects in 3D space, hence en-
abling the distinction between occlusions and interactions. Further-
more, from the depth cues we can effectively infer the convexity-type
of the detected objects, and along with the corresponding depth dif-
ferences, DiSR relations are extracted. For a spatial interaction to
hold, a depth distribution overlap must be evident, and depending on
the convexity-type of the interacting objects and in which part of the
distribution the overlap appears, a different qualitative spatial rela-
tion from the set of DiSR holds.

DiSR spatial relations take into account the depth information of
the detected object masks in the scene as well as their 2D location
considering the bounding box enclosing the detected mask of every
object. We present in Table 1 the definition of every DiSR relation in-
spired by the RCC set, whilst exploiting the RCC relations: ‘overlap’
(O) and ‘part’ (P, Pi) computed in the 2D image plane.

Table 1. DiSR

DiSR Definition Description
Sup(x,y) (DPO(x, y) ∧

surface(x)) ∨ On(y, x)
x supports y

Cont(x,y) P(y, x) ∧ concave(x) ∧
DPP(y, x)

x contains y

Adj(x,y) O(x, y) ∧ DPO(x, y) ∧
¬Cont(x, y) ∧
¬Cont(y, x) ∧
¬Sup(x, y) ∧ ¬Sup(y, x)

x is adjacent to y

NI(x,y) ¬Sup(x, y) ∧
¬Sup(y, x) ∧
¬Cont(x, y) ∧
¬Cont(y, x) ∧
¬Adj(x, y) ∧ ¬Adj(y, x)

x does not interact with y

The convexity type of an object, being either concave, surface or
convex, is described further in Section 5.2. ‘Depth Overlap’ (DPO)
and ‘Depth Proper Part’ (DPP, DPPi) are primitive relations which
hold between objects’ depth distributions, defined as:

DPO(x, y) ≡ ((dmaxx ≥ dminy) ∧ (dmaxx < dmaxy)∧
(dminx < dminy)) ∨ ((dmaxy ≥ dminx)∧
(dmaxy < dmaxx) ∧ (dminy < dminx))

DPP(x, y) ≡ (dmaxx > dcminy) ∧ (dmaxx ≤ dcmaxy)∧
(dminx ≥ dcminy) ∧ (dminx < dcmaxy)

where dmax and dmin are the maximum and minimum depth values,
respectively, by considering the depth cues of the detected object’s
mask, and dcmax and dcmin are derived from Alg. 2.

Moreover, the spatial relation On is defined as,

On(x, y) ≡ O(x, y) ∧ ((ymaxx ≥ ymaxy)∧
(yminx ≥ yminy) ∧ (xmaxx ≤ xmaxy) ∧ (xminx ≥ xminy))

where (xmin, ymax) and (xmax, ymin) are the top-left and bottom-
right corners of the detected object’s bounding box, respectively.

The definitions proposed are an approximation of the English
meaning they are referring to; however it is possible to satisfy the
definitions by configurations which do accord with intuitive mean-
ing of the English word. E.g. consider the case where three objects
are stacked the one on top of the other, then in the 2D image plane
On(top object, bottom object) will be True even though there is a
middle object in between. Nevertheless, these definitions are easy to
compute and work well in the everyday scenes we have considered so
far. In future work we may refine these relationships to more closely
correspond to the semantics of the English words.

5.2 Object’s Convexity-type
We employ Alg. 1 to determine every object’s convexity type, by
considering its depth distribution, extracted from the depth cues.
Detected objects are grouped into three convexity-type categories:
convex, concave or surface, in reference to their depth distribution.
The proposed algorithm is based on a convexity depth threshold
(threshconvex ) which defines the upper boundary of depth range infor-
mation of a ‘convex’ type object, the selection of which was deter-
mined from an empirical study. Objects with depth range greater than
threshconvex are subject to be grouped under ‘concave’ or ‘surface’
depending on their depth contour hierarchies (ContourHierarchy). A
depth contour is the contour created by the depth information exceed-
ing threshconvex . Contour hierarchies establish a tree structure of con-
tour inclusion, where every node of the tree stands for a contour and
every parent includes its children. Thus, the detection of a child con-



Algorithm 1 Define the convexity type of an object.
Given: threshconvex

1: procedure OBJECTCONVEXITY(distdepth)
2: dmax← max(distdepth); dmin← min(distdepth)
3: if ( dmax − dmin ) < threshconvex then
4: objecttype ← convex
5: else
6: C ← ContourHierarchy(distdepth)
7: if C.child() exists then
8: objecttype ← concave
9: else objecttype ← surface

10: return objecttype
11: end

Algorithm 2 Define min and max depth of an object’s concavity.
Given: h, n

1: procedure CONVEXITYDEPTH(distdepth)
2: dmax← max(distdepth); dmin← min(distdepth)
3: objecttype ← OBJECTCONVEXITY(distdepth)
4: if objecttype = concave then
5: sections← ( dmax − dmin )/h
6: dcmax← dmax
7: dcmin← dmax −(n∗ sections)
8: else dcmax← dmax ; dcmin← dmin
9: return dcmax , dcmin

10: end

tour in the depth domain, deduces the presence of a concave curve,
therefore a ‘concave’ type object, and ‘surface’ type otherwise.

5.3 Depth of Convex and Concave Objects
By estimating the distribution of the depth information we obtain
knowledge about the indentation area (m-) and protrusion area (M+)
of an object, as defined in the Process-Grammar [14]. More specif-
ically, visually ‘convex’ type objects do not appear to have any in-
dentation areas whereas ‘concave’ type objects are characterized
by their concavity curve which morphologically appears as a bay-
formation described as M+m-M+. Such information is critical to as-
certain a relation when two objects interact in the 2D image plane,
e.g. a Cont DiSR relation occurs between one or more ‘concave’ type
objects when the depth information of the containee confirms that is
between m- and M+ areas of the container. We propose Alg. 2 to in-
fer the boundaries of the m- and M+ areas, as a direct generalization
of the Process-Grammar to 2.5D, with respect to the object’s depth
information and convexity-type, indicating a concave curve in 3D
space. For a ‘concave’ type object we partition the depth information
into h sections for distinguishing the indentation from the protrusion
area. The n sections with the highest depth values are estimated to
capture its concave curve. The parametrization of h and n was con-
ducted in an empirical study. We set the depth boundaries of such
objects to enclose the concave curve’s depth information for detect-
ing the relation Cont. Depth boundaries of ‘convex’ and ‘surface’
type objects are not being processed due to concave curve absence.

6 LEARNING OBJECT AFFORDANCES
We learn object affordances by clustering AGraphlets , whilst em-
ploying a hierarchical approach. EveryAGraphlet represents an ob-
ject’s interaction with another object in the scene. We consider an
interaction between an object pair as the spatio-temporal sequence

of relations holding during an activity. By clustering such graph
structures we produce a hierarchy of similar affordances, which are
closely related with the way every object is being used in an activity.
Hence, our method does not pose any constraints in the number of
affordance clusters an object can be assigned to, whilst every object
has as many AGraphlets as detected interactions. E.g. consider the
scenario where an agent picks a bowl from a table and places it in the
microwave. The clustering mechanism examines the interaction of
the bowl with the table and the bowl with the microwave as two dif-
ferent interactions; two AGraphlets will be exploited for the bowl
implying that such an object is a supportee as well as a containee.

To clusterAGraphlets , we measure the difference of every graph
structure with every other by looking at their spatio-temporal differ-
ences. As every graph represents a pair-wise interaction, we there-
fore measure the difference between pairs of interactions. LetGαand
Gβbe two AGraphlets , each representing an interaction of the
objects α and β respectively, with some other object. The spatio-
temporal difference of these graphs is measured as defined in Eq. 1.

V
′α,β
R = {v : v ∈ {V

′α
R \ V

′β
R } ∪ {V

′β
R \ V

′α
R }}

where R ∈ {spat, temp}
(1)

For clustering graph structures, we propose the set Edit Distance
(sED) measure which captures the similarity between graph struc-
tures according to their vertex differences, shown in Eq. 2,

sED = cspat
∑

v∈V
′α,β
spat

v + ctemp
∑

v∈V
′α,β
temp

v (2)

where cspat and ctemp are the two normalized weights for the spatial
and temporal vertex differences, respectively, and ctemp = 1− cspat.

We exploit the sED measure to estimate the difference of ev-
ery detected object interaction, i.e. AGraphlet , with every other,
as well as combine all the sED values in a distance matrix; the rows
and the columns include the set of detected object-wise interactions
and every value of the distance matrix stands for the measured sED
difference between the respective row and column interactions. A hi-
erarchical clustering is performed on this distance matrix, exploiting
its sED values as the difference between the clustering datapoints,
and producing a hierarchy of similarities of the interactions compris-
ing its rows and columns. Fig. 3 illustrates a subset of the complete
hierarchical clustering output in the form of a dendrogram. The full
dendrogram comprises 21 clusters, which are formed by grouping
the leaves of the dendrogram with respect to their hierarchy. Every
cluster consists of one or more AGraphlets that represent the inter-
actions of the datapoints of that cluster. Such a hierarchy reveals the
similarities of the different interactions occurring in the data, which
declares a set of affordance clusters.

7 EVALUATION
7.1 Experimental Setup
For the evaluation of the proposed approach we compared the per-
formance of the clustering mechanism of affordances. Moreover, we
conducted experiments on the approach of Sridhar et al. [28] which,
to the best of our knowledge, is the most recent work that exploits
qualitative relational graphs to capture functional object clusters.

From the video data we extract statio-temporal pair-wise object
interactions from which the object affordances are revealed. We
use the CAD-120 dataset [13] which comprises RGB-D video data
of 10 human activities performed 3 times by 4 different actors.
These activities are everyday-life scenarios, with various configura-
tions of the objects in the scene as well as different camera orien-
tations. The activities are: ‘arranging objects’, ‘taking food’, ‘mak-
ing cereal’, ‘stacking’, ‘unstacking’, ‘microwaving food’, ‘taking
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Figure 3. (best viewed in color) Dendrogram of similar object interactions
from the hierarchical clustering. Color-coded graphs for each cluster

represent the kind of interaction each cluster captures. Due to high graph
complexity of the output, this is a sample of the full dendrogram.

medicine’, ‘having meal’, ‘cleaning objects’, and ‘picking objects’.
Given the current representation language described in Sec. 5 of this
paper, the affordances detectable in these activities are: ‘container’,
‘containee’, ‘supporter’, ‘supportee’, and ‘interactive’. Our method
is able to create more fine-grained groups of affordances from the
groundtruth set by considering the temporal information and it is not
restricted to the spatial relations occurring.

Furthermore, we employ the QSRlib library [9] for the construc-
tion of AGs. For the h and n values which are used in defin-
ing the indentation area of a concave object, we selected the val-
ues of 5 and 3 respectively, after conducting an empirical study for
h ∈ {2, 3, 4, 5, 6, 7} and n ∈ {1, . . . , h−1}. We also set threshconvex

value to be 4 after evaluating on the values 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

7.1.1 Object Detection & Tracking
Object locations and depth information are provided from the pre-
dicted objects’ masks by employing the Mask R-CNN framework
[12] trained on the COCO dataset [17]. The box enclosing the ob-
ject’s mask corresponds to the object’s bounding box. However, since
objects’ bounding boxes predictions are sparse, we achieve an en-
hancement in the object tracking system, by exploiting the CSRT
tracker [5] on the Mask R-CNN predicted bounding boxes. We en-
rich the objects tracks by considering the CSRT predictions from the
latest object bounding box occurrence, for frames where Mask R-
CNN failed to detect the object. No object labels are exploited for
this purpose. A threshold of minimum 0.5 IoU overlap, determined
from an empirical study, is required to assign a bounding box predic-
tion as the predicted location of a detected object.

7.1.2 Semantic Depth Map
The predicted object mask’s depth information is employed to infer
the convexity type of every object. We exclude any pixel which is part
of a human detection by retrieving a human mask from the Dense-
Pose framework [4]. Whilst Mask R-CNN produces object masks for
every object separately, overlapping objects have overlapping masks,

thus the intersected mask area may cause problems in determining
the object’s convexity type. A semantic depth map is constructed for
every frame of the video data, consisting of all the predicted object
masks while eliminating any detected intersection mask area. This is
achieved by assigning every pixel of such area to the object with the
highest mask detection score.

7.2 Results

We used 80% of the CAD-120 dataset to determine the parameters
as described above and then evaluate the proposed approach on the
remaining 20% unseen videos of the dataset. We inspect the clusters
of affordances formed and we evaluate their homogeneity and com-
pleteness. The datapoints being clustered consist of detected objects
with their interactions with any other object, allowing multiple data-
points to point to the different interactions a single object might hold.
We evaluate the clusters by reporting the normalized v-measure, ho-
mogeneity, completeness, and normalized mutual information (NMI)
scores, with higher values implying a better clustering.

To evaluate our clustering mechanism we perform a comparison
between our approach and several baselines:
• A1C: for evaluating the homogeneity score, we create a single

cluster containing all the datapoints, thus achieving a complete-
ness score of 1.0.

• MC: for evaluating the completeness score, we cluster every data-
point in a different cluster, obtaining a homogeneity score of 1.0.

• Oracle: we examine the best v-measure performance by inspect-
ing the clustered data and the groundtruth labels and creating the
optimal set of clusters. Such baseline denotes the upper perfor-
mance limit of every experimental set.
We perform two kinds of experiments to investigate how well the

clustering mechanism can generalize across different data samples.
Both experiments comprise the test set and have the same propor-
tion of groundtruth affordance labels, which matches the one of the
whole dataset. The first experiment consists of video data with ac-
tivities presenting the same spatial interactions however in inverse
detection order, e.g. putting an object in a container and retrieving
an object from a container are inverse activities. The second includes
very diverse activities in the temporal as well as in the spatial rela-
tional domain. The results we obtain are presented in Table 2.

Table 2. Comparison with baselines.

Method V-measure NMI Homogeneity Completeness

E
xp

1

Baseline A1C 0.0 0.0 0.0 1.0
Baseline MC 0.288 0.288 1.0 0.168

Oracle Baseline 0.539 0.539 0.722 0.430
Proposed 0.539 0.539 0.722 0.430

E
xp

2

Baseline A1C 0.0 0.0 0.0 1.0
Baseline MC 0.227 0.227 1.0 0.128

Oracle Baseline 0.456 0.456 0.572 0.379
Proposed 0.446 0.446 0.665 0.336

Table 3. Comparison with related work.

Method V-measure NMI Homogeneity Completeness

E
xp

1 Sridhar et al. [28] 0.098 0.103 0.076 0.138
Proposed 0.539 0.539 0.722 0.430

E
xp

2 Sridhar et al. [28] 0.128 0.133 0.100 0.176
Proposed 0.446 0.446 0.665 0.336



7.2.1 Results Discussion
The baselines presented in Table 2 present the overall performance
of the hierarchical clustering mechanism by evaluating the reported
indices. In experiment 1, our approach reaches the optimal cluster-
ing performance, thus the reported metric values are identical to the
ones of the Oracle baseline. In the second experiment, the proposed
approach obtains performance very close to optimal clusters demon-
strating a decrease of 2% for both the v-measure and NMI scores.
This represents an 11% drop of the completeness score, compared to
the Oracle baseline, causing a slight boost of 16% of the homogene-
ity score. The reported results in Table 3 demonstrate a significant
elevation for all the metrics of our approach in reference to the work
of Sridhar et al. [28], in both experiments.

The improvement in the reported metrics indicates the efficacy of
the proposed method in creating clusters of affordances in very di-
verse scenarios, as well as in the presence of a temporal manifold
of object interactions. In our future work we aim to evaluate our ap-
proach on a more challenging dataset with a wider range of object
affordances than the ones currently considered.

7.3 Ablation Study
7.3.1 Depth-informed Relations
We further evaluate and provide comparisons of the proposed DiSR
with the primary set of RCC relations for the two aforementioned
experiments. We choose to compare against RCC5 which consists of
the relations: ‘discrete’ (DR), ‘partially overlapping’ (PO), ‘proper
part’ (PP, PPi), and ‘equal’ (EQ), since the full set of RCC-8 rela-
tions are not present in the interactions captured in CAD-120 dataset.
The experimental results for both settings are presented in Table
4. The exploitation of depth information for inferring object affor-
dances shows a considerable improvement in all metrics in compar-
ison to using the primary RCC set. This improvement results from
the more accurate spatial relationships of interactions, thus creating
more accurate graphical structures for describing them.

Table 4. Experiments with and without consideration of the depth cues.

Spatial Relations V-measure NMI Homogeneity Completeness

E
xp

1 RCC5 0.337 0.337 0.359 0.317
DiSR 0.539 0.539 0.722 0.430

E
xp

2 RCC5 0.381 0.281 0.590 0.282
DiSR 0.446 0.446 0.665 0.336

7.3.2 Spatio-temporal Weights of Vertex Differences
For clustering object interactions we presented the sED measure in
Section 6, which is based on the normalized cspat and ctemp parame-
ters. These weights correspond to the impact of the spatial and tem-
poral difference in the total graph disparity. We evaluate the contri-
bution of the spatial and temporal relational difference to the creation
of more homogeneous and complete affordance clusters by investi-
gating all possible values for the cspat and ctemp parameters from 0.0
to 1.0 with a step of 0.1. The results of this ablation study are illus-
trated in Fig. 4. For every plot, the x-axis corresponds to the height
values of the produced dendrogram (Dendrogram threshold) from
the hierarchical clustering, at which we split the dendrogram struc-
ture to create clusters with the leaf nodes. Additionally, the y-axis of
the plots correlates to the suggested clustering metric (homogeneity,
completeness, and v-measure). The label of every clustering in the
figure gives the weight of the cspat parameters (and the weight of the
ctemp is thus 1 minus this value).

The results illustrate the impact the spatial and temporal relational
weights have on the reported metrics. All metrics demonstrate that
the best model performance is captured when we consider both spa-
tial and temporal vertex differences. More specifically, we observe

that values of cspat between 0.4 and 0.6 achieve the highest v-measure
scores. Generally, an improvement in the homogeneity score is evi-
dent with the increase of the cspat weight, whilst acknowledging a
decrease in the completeness score. This behavior implies that each
kind of qualitative relation, i.e. both spatial and temporal, benefits
one aspect of the clustering mechanism, albeit that both spatial and
temporal information are required for more homogeneous and com-
plete clusters of object affordances.

Measure

Homogeneity
Completeness
V-measure

1.0

1.0

0.5

0.5

cspat = 0.0 cspat = 0.1 cspat = 0.2 cspat = 0.3 cspat = 0.4 cspat = 0.5

cspat = 0.6 cspat = 0.7 cspat = 0.8 cspat = 0.9 cspat = 1.0

Dendrogram threshold

Figure 4. The homogeneity, completeness, and v-measure scores for the
validation set with the spatial weight extending from 0.0 to 1.0.

8 LIMITATIONS
Our definitions of spatial interactions are modeling spatial states of
the interactive objects, e.g. a cup is on the table. However, some
kind of affordances are derived from interactions holding as a tran-
sition from one state to another, e.g. ‘pourable’,’able to be poured’
are inferred from the transition of the state Cont(bowl1, liquid) to
Cont(bowl2, liquid). Our method is limited to only detect state-
based relations, hence affordances as ‘pourable’, ‘able to be poured’,
‘throwable’, and ‘able to be thrown’ are not detectable in the current
pipeline. Another limitation considers the ability to detect and rep-
resent visual changes of the object’s state, e.g. deformation, cleanli-
ness. E.g. ‘wipeable’ and ‘cleanable’ are affordances for which the
distinction requires a different vision system and an enhanced repre-
sentation of features related with the objects themselves. It is worth
mentioning that, though the proposed framework is generic, it is cur-
rently limited to the set of detectable and defined relations. Moreover,
an enhancement of detecting interactions of more than two objects is
necessary for affordances which are inferred from the interaction of
multiple objects, e.g. learning ‘stirable’ requires both a liquid and a
spoon to be contained in a concave object.

9 CONCLUSION
In this work we present a novel depth-informed qualitative repre-
sentation for handling occlusions and efficiently detecting relative
spatial relationships between objects in the 2D image plane. We also
address the problem of affordance categorization by clustering qual-
itative graphical structures of object interactions in an unsupervised
way. Our experiments demonstrate that exploiting the proposed rela-
tions produces more accurate qualitative graphs, describing the ob-
ject interactions, resulting in more homogeneous and complete clus-
ters of affordances, and higher v-measure scores. Note that from the
clustered interactions, it is then possible to assign object affordances
to the object nodes in the AGraphlets (e.g. supporter/supportee).

The enrichment of qualitative relations capturing relative motions
of objects is a future direction for expanding the possible affordances
our method can detect. We also aim to experiment with more diverse
and complex datasets in terms of object interactions as well as en-
hancing the DiSR qualitative set with relations that also capture more
complex interactions e.g. pouring.
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