Ostfalia @

Enhancing Computer Science Education by Automated
Analysis of Students’ Code Submissions

ECAI 2023 - Workshop Al4Al

Lea Eileen Brauner & Frank Héppner

Ostfalia University of Applied Sciences
Dept. of Computer Science, Wolfenbiittel, Germany

1. Motivation & Problem

2. Challenges & Related Areas
3. Proposed Approach

4. Evaluation

5. Summary

MOTIVATION & PROBLEM

SN = EE B students

o lecturer

SN g ElE B students

\\\///

X grading? unit-testing?

lecturer

SN = EE B students

\\\///

o lecturer

EER By

SN = EE B students

& lecturer

. . . . '
A | 4% % discuss solution approaches!

students

lecturer

black boxes

CHALLENGES & RELATED AREAS

CHALLENGES & RELATED AREAS

task: write a function that returns the value range of the passed array
(which carries elements of up to three digits only)

class Range {

int getRange (int[] arr) {
int min = 1000;
int max = -1000;
for

(int i1i=0;i<arr.length;++1)
if (arr[i]l<min) min=arr[i];

else if (arr[i]>max) max=arr[i];
return max-min;

CHALLENGES & RELATED AREAS

task: write a function that returns the value range of the passed array
(which carries elements of up to three digits only)

class Range {

different approaches:

int getRange (int[] arr) { . .
int min = 1000; * sort array first, subtract first
int max = -1000; from last element

for (int i=0;i<arr.length;++1) . first determine onIy the

else if (arr[i]>max) max=arr[i]; maximum, then negate array,
return max-min; again determine only the
} maximum (now minimum)

if (arr[i]l<min) min=arr[i];

CHALLENGES & RELATED AREAS

class Range {

class Range { int small = 1000;
int large = -1000;
int getRange (int[] arr) {
int min = 1000; void include (int a) {
int max = -1000; if (a<small) small=a;
for (int i=0;i<arr.length;++1) else if (a>large) large=a;
if (arr[il<min) min=arr[i]; }
else if (arr[i]l>max) max=arr[i]; int range (int[] arr) {
return max-min; for (int i=0;i<arr.length;++1)
} include (arr[il]);
} return large-small;

CHALLENGES & RELATED AREAS

class Range {

class Range { int small = 1000;
int large = -1000;
int getRange (int[] arr) {
int min = 1000; void include (int a) {
int max = -1000; if (a<small) small=a;
for (int i=0;i<arr.length;++1) else if (a>large) large=a;
if (arr[il<min) min=arr[i]; }
else if (arr[i]l>max) max=arr[i]; int range (int[] arr) {
return max-min; for (int i=0;i<arr.length;++1)
} include (arrf[i]);
} return large-small;

RELATED AREAS

class Range { class Range {

int small = 1000;

int getRange (int[] arr) | int large = -1000;

int min = 1000;

int max = -1000; void include (int a) {
for (int i=0;i<arr.length;++1i) if (a<small) small=a;
if (arrfi]<min) min=arr[i]; else if (a>large) large=a;
else if (arr[i]>max) max=arr[il]; }
return max-min; int range (int[] arr) {
} for (int i=0;i<arr.length;++1)

}

include (arrf[il]);
. . t 1 -small;
* plagiarism detection o e

« edit distance

e code clone detection

RELATED AREAS

class Range { class Range {

int small = 1000;

int getRange (int[] arr) { int large = -1000;

int min = 1000;

int max = -1000; void include (int a) {
for (int i=0;i<arr.length;++1) if (a<small) small=a;
if (arr[i]l<min) min=arr[i]; else if (a>large) large=a;
else if (arr[i]>max) max=arr[il]; }
return max-min; int range(int[] arr) {
} for (int i=0;i<arr.length;++1i)
} include (arr[i]);

return large-small;

* plagiarism detection X
 edit distance X
e code clone detection X

« idea: involve variable usage °

PROPOSED APPROACH

VARIABLE USAGE PATHS (VUPS)

class Range {
int small = 1000;
int large = -1000;

Declaration

void include (int a) {
if (a<small) small=a;

else if (a>large) large=a;

name

parameter 0

— a/parameters/include/Range
— a/expression/if/if/body/include/Range

— large/declaration/Range 10

Figure 1: modified AST of class Range

CLASS COMPARISON

class C class D
a/expression/while/func/C x/assignment/for/proc/D
a/declaration/func/C x/expression/for/proc/D

b/assignment/for/func/C x/declaration/D

b/expression/for/func/C y/expression/for/read/D
b/declaration/func/C y/declaration/read/D
c/expression/for/get/C z/expression/while/proc/D

c/declaration/get/C z/declaration/proc/D

11

CLASS COMPARISON

class C class D
a/expression/while/func/C x/assignment/for/proc/D
a/declaration/func/C x/expression/for/proc/D

b/assignment/for/func/C x/declaration/D

b/expression/for/func/C y/expression/for/read/D
b/declaration/func/C y/declaration/read/D
c/expression/for/get/C z/expression/while/proc/D

c/declaration/get/C z/declaration/proc/D

11

CLASS COMPARISON

class C class D
a/expression/while/func/C b/assignment/for/func/C
a/declaration/func/C b/expression/for/func/C

b/assignment/for/func/C b/declaration/D

b/expression/for/func/C y/expression/for/read/D
b/declaration/func/C y/declaration/read/D
c/expression/for/get/C z/expression/while/proc/D

c/declaration/get/C z/declaration/proc/D

11

CLASS COMPARISON

class C class D
a/expression/while/func/C b/assignment/for/func/C
a/declaration/func/C b/expression/for/func/C
b/assignment/for/func/C b/declaration/C
b/expression/for/func/C c/expression/for/get/C
b/declaration/func/C e/declaration/get/C
c/expression/for/get/C a/expression/while/func/C

c/declaration/get/C a/declaration/func/C

11

CLASS COMPARISON

class C class D
a/expression/while/func/C b/assignment/for/func/C
a/declaration/func/C b/expression/for/func/C
b/assignment/for/func/C b/declaration/C
b/expression/for/func/C c/expression/for/get/C
b/declaration/func/C e/declaration/get/C
c/expression/for/get/C a/expression/while/func/C
c/declaration/get/C a/declaration/func/C

total sim = 3

11

EVALUATION

EVALUATION - PROCEDURE

» 2-step-Evaluation

1. self-created example programmes — explicit testing of desired behaviour
2. more comprehensive evaluation on real student submissions & comparison of
different approaches and JPlag

12

EVALUATION - PROCEDURE

» 2-step-Evaluation

* projection of results in ’
2D-space

13

EVALUATION - PROCEDURE

» 2-step-Evaluation

10

0.8

* projection of results in
2D-space

0.6
I

0.4
L

* manual grouping in
comparison with hierachical
cluster analysis

0.2

0.0

14

EVALUATION - RESULTS

e 4
P
@
]
©
IS
o
IS
N
S
<o
°© > c o
o [c
s g 3
§ 8 3
B 2
° @
0.0 03 06 B
S

Figure 2: Evaluation of example codes

i
3

mid

mid2loop

left

right

15

EVALUATION - RESULTS

02

‘ 02

01

0.0

-0.4 -0.2 0.0 02 -0.6 -0.4 -0.2 00 02

Figure 3: 2D results of proposed approach (left), Jplag (right)

16

EVALUATION - RESULTS

o
@ .

g

s g

e]

00 ° S

< | 3
3

T

3

s 7 0

=

g

g

H

0z
o
S 7 aum
00 02 06 En <0z 00 02

(a) 2D results of proposed approach (left), Jplag (b) dendrograms of hierachical clustering of
(right) proposed approach (left), Jplag (right)

17

EVALUATION - RESULTS

@ .
g
& g
e]
3
< | 3

3
. g
3

.

3 s
g
g
=
]

o
o |
S Ban i
HHEg
@
o o P P -

(a) 2D results of proposed approach (left), Jplag (b) dendrograms of hierachical clustering of
(right) proposed approach (left), Jplag (right)

— solution approaches can be distinguished by comparing VUPs

18

SUMMARY

SUMMARY

Summary: Thank you for your attention!
* Measure structural similarity of

student submissions Q
+ Classical approaches fail (edit A

distance, JPlag)

* New approach guided by variable
usage

« Encouraging results Any questions?

19

	Motivation & Problem
	Challenges & Related Areas
	Proposed Approach
	Evaluation
	Summary

