
Language-Model Assisted Learning How to
Program?

Jochen L. Leidner1,2[0000−0002−1219−4696] and Michael Reiche1

1 Coburg University of Applied Sciences, Friedrich Streib-Straße 2, 96450 Coburg,
Germany

2 University of Sheffield, Regents Court, 211 Portobello, Sheffield S1 4DP, United
Kingdom

Abstract. Foundational language models have forever changed how
NLP prototypes may be rapidly constructed, dramatically reducing the
“cost of curiosity”. This also affects the way we can teach and learn how
to program.
In this paper, we explore how well foundational models such as large,
pre-trained neural transformers can answer questions pertaining to pro-
gramming in a “learning to code” context: we present a new dataset
comprising questions that students that learn how to program and stu-
dents of particular programming languages – as offered by typical under-
graduate university courses – typically ask. We cover both fundamental
concepts in programming and also specific programming language is-
sues. Although our study focuses on English, we believe results would
be similar for other human languages due to the multilingual nature of
many foundational language models. We explore how well a foundational
(generic) pre-trained language model can answer them.
To the best of our knowledge, this is one of the first studies that assesses
how well generic foundational models and applications like ChatGPT
are capable of answering different types of typical programming-related
questions. This is a question of primary importance if we consider using
such models to assist human students in their struggle to become (good)
programmers.

Keywords: Computer-Supported Instruction · AI for Teaching · Im-
proving the Teaching of AI · Pretrained Foundational Models · Educa-
tion.

1 Introduction

1.1 Background and Motivation

Learning how to program is an essential part of studying computer science, be-
cause it enables students to implement systems themselves that embody their
own (and later, their clients’) ideas. It is also an essential and valuable trans-
ferable skill: students of other subjects, from architecture to physics, are also
often expected to take programming classes, and software developers are above-
average earners.

Diedrich Wolter
working paper
final paper will appear in Springer Proceedings of ECAI Workshops



2 J. L. Leidner and M. Reiche

Nevertheless, like mastering to play the piano or mastering a foreign lan-
guage, learning to program entails numerous challenges: to grasp the nature of
the problem domain (get the necessary background), to understand a specific
problem that a computer program to be written is expected to solve, to decom-
pose the problem, to master the lexis (keywords and operators), syntax (EBNF
grammar), semantics (e.g. types), development environment (IDEs or command
line, run-time) and libraries of the programming language(s) used, to design
the architecture of the program that is the tentative solution, to implement the
code by making informed choices between self-coded parts and parts re-used
by calling external third-party libraries, commercial or open-source, to handle
edge cases and errors, to test the code, to document the code. Therefore, it is
hardly surprising that three-year Bachelor programs do not produce experienced
programmers, given that programming is only one of the many skills/knowledge
areas of the computer science curriculum.

In the past, many efforts have gone into the better or faster teaching of pro-
gramming by supporting the human learner with computational help, including
the use of AI techniques (planning the progress, modeling the learner’s grasp of
concepts and his/her progress).

Very recently, the introduction of neural transformers and large pre-trained
language models (also called “foundational models”), which are trained with
general-purpose un-annotated human prose language, and sometimes code frag-
ments, has dramatically changes the way natural language applications can be
prototyped. Systems like Google’s BERT [5], OpenAI’s GPT-3, GPT-3.5, GPT-
4 and the application ChatGPT [12,13], and many others based on deep neural
networks featuring the transformer architecture [18] permit to directly pose a
question in English and other languages and get an answer back, also in a human
language. Although these models were originally intended to be “just” genera-
tive models of language production, the fact that they were trained with vast
quantities of text, including terabytes of World Wide Web content, means that
the language material to train the systems also articulated an enormous amount
of world knowledge, thus implicitly solving the knowledge bottleneck challenge
that prevented progress in AI in the 1980s.

1.2 Research Question

In this paper, we explore the research question “How well can a (generic) neural
transformer model answer programming questions?”. It is important to know to
what degree pre-trained models can cover answers to such questions, especially
as they were not originally designed to provide knowledge (they are language
models) and also as they were not a priori designed as programming aids (again,
they are (human) language models). This research question is distinct from the—
more interesting but harder-to-answer—question “How well can one (learn how
to) program when relying (only) on a foundational language model?”.)

To this end, we have manually collected a set of questions from the “learn-
ing how to program” domain; while they are not real questions collected from
students, they are informed by decades of programming and teaching how to



LM-Assisted Learning How to Program? 3

program between the authors, and they are therefore indicative of the nature of
questions real students would ask (and have repeatedly asked over the years).
Specifically, to what extent can a pre-trained language model such as a neural
transformer like ChatGPT provide (1.) code answers or (2.) answers about code
that are (i.) correct and that (ii.) do not contain dangerous omissions (e.g. leav-
ing out error handling) or misleading output (foundational models are known
to “hallucinate”, which means providing untrue output as these models have no
notions of truth or falsehood, as they focus on how to say something well).

2 Related Work

Early computer-based initiatives to support students. After Carbonell’s early and
seminal work on intelligent tutoring systems [4], the late 1970s the 1980s saw a
number of different approaches, including those using traditional AI methods:
BIP-I , BIP-II (basic programming; Barr et al., 1976), BRIDGE (programming;
Bonar 1985); Flow Tutor (FLOW programming language, Genter, 1977), LISP
Tutor (LISP programming; Anderson and Reiser, 1985); MALT (basic machine
language programming; Koffman and Blount, 1975); MENO-Tutor (basic Pascal
programming; Woolf and McDonald, 1984); PROUST (Pascal programming;
Soloway and Johnson, 1984); SCENT-3 Advisor (McCalla et al., 1988); SPADE
(basic LOGO programming; Goldstein and Miller, 1976); and TALUS (basic
LISP programming, Murray, 1987).

Robins, Rountree and Rountree review work on teaching and learning pro-
gramming [11]. Koulouri, Lauria and Macredie [7] evaluate quantitatively alter-
native approaches to teaching beginners how to program.

Foundational Neural Language Models. OpenAI’s GPT-3 [3] and ChatGPT [12]
have been early foundational models that have been transformational in natural
language processing: they showed how large, pre-trained language models such
as neural transformers can dramatically reduce the development time of NLP
systems by using large quantities of un-annotated text to train general-purpose
“foundational” models. Our experiments use OpenAI’s ChatGPT model.

Foundational Models and Programming. Microsoft’s GitHub Copilot (based on
Open AI Inc.’s Codex model3) was the first language model aimed at helping
coders that was deployed at large-scale (on the Web-based source code revision
control service Github.com). [17] describe a human experiment comprising 24
students that use Copilot for three programming tasks and its impact on task
completion time and success rate. [1] report on an analysis of how 20 program-
mers interacted with Copilot. They observed that behavior could be grouped
into two modes, acceleration mode, where a programmer uses Copilot to com-
plete the code faster and exploration mode, where a programmer uses Copilot to
explore various alternative options for solving a coding problem. [15] report on a
Microsoft study that aimed to use a generic neural transformer model to extract

3 see https://openai.com/blog/openai-codex

https://openai.com/blog/openai-codex


4 J. L. Leidner and M. Reiche

information about locking, exceptions and performance from natural language
comments of a large software repository. Bird et al. [2] also describe a case study
where a set of subjects got instructed how to use Copilot, and then were given
two tasks, namely to create a Tic Tac Toe game and to write code that sends an
email programmatically via a Sendmail API. The authors describe how subjects
responses to questions indicate an increase in productivity. In 2022, Imai, when
studying human-computer “pair” programming found that programming with
Copilot helps generate more lines of code (LoC) than human pair-programming
in the same period of time, but at a lower quality level [6]. Surameery and Shakor
provide a high-level comparison of debugging using Chat GPT versus using tra-
ditional debugging tools, and conclude that foundational language models can
provide a useful expansion of the debugging toolbox of the future by providing
bug prediction and bug explanation capabilities [16]. Sarsa et al. [14] present a
very interesting approach: they explore how well foundational LMs can generate
programming exercises. In a sense, this is the inverse exercise of our RQ1, which
explores their ability to answer (human-provided) questions.4 In the context
of a next-generation programming education e-book, the same group investi-
gated LMs’ power to explain code in an educational context [9]; they let human
students rate the usefulness of the automated output.5 Leinonen et al. also com-
pare code explanations created by human students and automatic large language
models [8]. They look for differences in accuracy between students and LMs; in
contrast, we explore the absolute correctness of human questions against LM
answers (as evaluated by a human expert).

None of these works uses expert judgment to score a LM’s ability to answer
coding questions based on an open corpus.

3 Scope

We collected a set of questions based on the author’s experience in using (from
Scheme over C/C++ to Rust) and teaching (from FORTRAN 90 over Java to
Python) various programming languages included general questions of under-
standing the programming process (c.f. Table 3) as well as questions in or about
specific programming languages (c.f. Table 4). To mitigate the problem of per-
sonal bias, we checked the programmer help Website StackExchange.org for the
number of times similar questions have been asked, to ensure that at least for a
sizeable subset of questions, we have evidence that they really already occurred.

We selected programming concept questions based on the typical topics
that create difficulties (recursion, type systems etc.), and we selected program-
ming languages that are important enough (leaving out many others e.g. AWK,
FORTH, Erlang) and familiar to the author (leaving out e.g. BCPL, Verilog,
Wolfram language, BLISS and Snobol).

4 We thank an anonymous reviewer for making us aware of the work of Sarsa, MacNeil,
Leinonen and co-workers.

5 Questions for code explanations are one of our 4 question types: see type 3 in Table 3.



LM-Assisted Learning How to Program? 5

Table 1. A Sample of Programming Concepts Covered in the Dataset

abstraction ACID anonymous function
divide and conquer domain-specific language generator function
immutable object linked list mailbox
recursion REST reusability
singleton class save data to a file window

Table 2. A List of Error Types Covered in the Dataset

syntax error wrong type lifetime error
scope error logical error forgot to initialize
unallocated memory index out of bounds null pointer error (

4 Method

We execute the set of questions against the OpenAI Inc. ChatGPT API, one
at a time. To implement the processing by the language model, we used a bash
script, which sends questions to ChatGPT via the sgpt command6 and stores
the response in an SQL database. Our question dataset was processed on a
MacBook Air 10 (2021) with ARM M1 processor in 12:26 Minutes including
network round-trip time.

5 Dataset

The resulting questions together with the answers provided by the ChatGPT
model and the metadata described in Appendix B is available from our GitHub
repository7 and, at the time of writing, comprises N = 105 questions, model
responses (as of July 20, 2023, using the May 23 version of the model) and
metadata. Tables 4 and 1 provide the number of questions per concept and
language in parentheses.

6 Towards an Evaluation

6.1 Quantitative Evaluation

Although we will also provide numbers, our overall evaluation approach is qual-
itative; due to the small size of our corpus, our numbers are dominated by the
small number of examples of each of the many phenomena that should be stud-
ied. Nevertheless, as we shall see, a consistent pattern emerged.

6 see https://github.com/tbckr/sgpt
7 see https://github.com/Information-Access-Research-Group-IARG/
Prorgramming-Questions-for-ChatGPT

https://github.com/tbckr/sgpt
https://github.com/Information-Access-Research-Group-IARG/Prorgramming-Questions-for-ChatGPT
https://github.com/Information-Access-Research-Group-IARG/Prorgramming-Questions-for-ChatGPT


6 J. L. Leidner and M. Reiche

Table 3. General Question Types Covered in the Dataset

No Question Type Example

1 Syntax How do I formulate X in language Y
2 Idiom How do I achieve to get X done in language Y
3 Explain What does code X do?
4 Diagnose Why does code X not work?

Why does code X not do Y?

Table 4. Programming Languages Covered in the Dataset

Python C++ Java C
JavaScript Julia Kotlin Bash/sh
Prolog Scheme/LISP Rust FORTRAN
COBOL R Matlab

We manually graded the answers of the ChatGPT model for all questions,
assigning an ordinal rating of 0 for wrong/incorrect responses if any syntactic
errors, semantic errors, type errors, or logical errors were contained in the re-
sponse, or if code shown did not implement what was requested. Partially correct
answers that were helpful (a rather subjective notion, admittedly) were assigned
a rating of 1, and fully correct and relevant answers were assigned a rating of 2.
We added the verbatim output and grade to the database.

This way of scoring is admittedly crude, and in future work, more detailed
aspect-oriented grading experiments should be carried out. However, out three-
point ordinal scoring method worked well enough on the questions we had to
swiftly grade the set of questions gathered, and to get a sense of ChatGPT’s
abilities.

Results. Based on our scoring method, the 105 questions reached 158 points,
leading to an arithmetic mean of Avg = 1.7753. Most questions get at least par-
tial credit: only one question was marked 0, because the question about anony-
mous functions in Kotlin led to an explanation for named functions instead.

This is work in progress; we plan to extend the database with material found
to be recurring in student programming classes, and to provide a more extensive
evaluation. One could also collect realistic questions from students and validate
questions against StackExchange regarding their frequency of occurrence.

6.2 Qualitative Evaluation

How useful are the answers? The are often impeccable. For example:
▶ Human Question I:
What is divide and conquer? Explain it to me using a chess game as

an example.



LM-Assisted Learning How to Program? 7

▶ Machine Answer I:
Divide and conquer is a programming paradigm that involves

breaking down a problem into smaller subproblems, solving them

independently, and then combining the solutions to solve the

original problem. It is often used to solve complex problems

more efficiently. In the domain of writing a chess game, an

example of using divide and conquer could be implementing the

move validation logic. Instead of checking the validity of a move

for the entire chessboard, the board can be divided into smaller

sections, such as rows or columns. Each section can then be

validated independently, reducing the complexity of the problem.

For instance, when validating a move for a specific piece, the

program can divide the chessboard into rows and check if the move

is valid within that row. Similarly, it can divide the board into

columns and validate the move within each column. By breaking down

the problem into smaller sections, the move validation process

becomes more manageable and efficient.

▶ Human Question II:
What is the difference between String and StringBuffer in Java?

▶ Machine Answer II:
The main difference between StringBuffer and String in Java is

that StringBuffer is mutable, meaning its value can be changed,

while String is immutable, meaning its value cannot be changed

once it is created. In other words, when you modify a StringBuffer

object, it does not create a new object, but instead modifies

the existing object. This can be useful when you need to perform

a lot of string manipulation operations, as it avoids creating

multiple new objects. On the other hand, when you modify a

String object, it creates a new object with the modified value,

leaving the original object unchanged. This can be less efficient

when performing a lot of string manipulation operations, as it

involves creating multiple new objects. Another difference is that

StringBuffer is synchronized, which means it is thread-safe and

can be used in multi-threaded environments without any issues.

String, on the other hand, is not synchronized. In summary, if

you need to perform a lot of string manipulation operations or if

you are working in a multi-threaded environment, StringBuffer is a

better choice. If you don’t need to modify the string and want to

ensure immutability, String is the way to go.

On the other hand, sometimes functional but incomplete code is returned,
as in the following:



8 J. L. Leidner and M. Reiche

▶ Machine Answer III:
You can load a file containing whitespace-separated integers into

an array in Python by following these steps:

1. Open the file using the ‘open()‘ function and specify

the file path and mode. For example, to open a file named

"numbers.txt" in read mode, you can use: (...) file =

open("numbers.txt", "r") (...)

Results. The code in the response is working and well-explained, but a
hypothetical “file not found” situation is not handled. However, to be fair, many
online Website also lack this level of sophistication.

7 Discussion

7.1 Accomplishments

We reported on an ongoing project to collect questions of the kind that learners
of programming concepts and common programming languages may face. Our
findings suggest foundational language models are capable of solving program-
ming tasks at the level of a good to very good student, which is remarkable,
in particular due to the fact that ChatGPT was not specifically developed as a
programming assistant (unlike Copilot).

7.2 Limitations

Our work is still small scale, and our sample suffers from selection bias. We
anticipate that a Wizard of Oz experiment with real students could lead to a
bigger and better corpus, and well supplement our collection effort. We need to
increase the percentage of questions that explain code and that contain bugs in
this process. Our work is also limited in that we have not yet conducted any
form of inter-coder agreement. Another limitation is that in some countries (e.g.
Germany), the student have a right to be taught the correct solutions, so it is
not acceptable for e.g. a chatbot to occasionally get the answer wrong (“halluci-
nation”); this could be addressed by warnings to the user. In the box in Table 5,
we report on a parallel experiment in which students without programming skills
were able to solve a technical assignment assisted by ChatGPT.

However, preliminary experiments by the second author have shown that
while task completion probability and task completion time improve when sup-
porting students with a chat-enabled transformer, understanding of program-
ming concepts does not (see Box “A Teaching Experiment” in Table 5).

8 Ethical Reflections

The ability of language models historically came as a surprise: emerging out
of the research into large (human) language models that got pre-trained with



LM-Assisted Learning How to Program? 9

Table 5. A Case Study with N = 2 Teams of Non-Programmers

In the summer term of 2023, we conducted a controlled experiment “Artificial
Intelligence Team Project” at Coburg University of Applied Sciences, with 6 Master’s
students in business studies. The students were grouped into à 3 students each. The
task was to classify an annotated dataset of about 400k German-language feedback
messages and numerical ratings of patients’ experiences with medical practitioners
according to the sentiment polarity expressed (into positive and negative comments)
using a simple, two-class logistic regression model. To achieve this, Python code had
to be used for data understanding, data preparation and modelling. One question
was of how well the students, absent any machine learning experience and hardly
any programming experience, could generate functional code fragments and attach
them to each other using only a pre-trained language model. It turned out that
both groups generated functional Python code, and produced two classifiers with
F1 > 98%. OpenAI’s ChatGPT (model 3.5 version of May 24, 2023, used with
German conversations) as the pre-trained language model used was largely responsible
for the success of the project. Indeed, every line of code was generated by ChatGPT,
corrected in case of error, and described for the students. This was achieved by
adapting prompts, such as instructing ChatGPT to please answer in understandable
language or to please correct the previously generated code using an error from
Jupyter Notebook or PyCharm. The prompts for generating programme code were
formulated without or with hardly any computer science-specific technical terms. A
typical prompt for code generation was (translated from German): “How do i remove
stop words in column 3 in a dataframe?” A typical prompt for code improvement was
the following (again, translated from German): “Instead of the accuracy, it should be
output how many were correctly identified with value 0.”

Anecdotal Results: All students reported ChatGPT changed the way they worked,
it enabled them to work faster, and to bridge gaps in their knowledge. One group also
reported, however, that their understanding of programming did not deepen in this
exercise using ChatGPT. ■

vast amounts of text, data crawled from the World Wide Web included not just
plenty of useful text, but also code repositories, programming discussion forums
etc. One challenge is that the exact set of Web sites included in the training of
the proprietary models like OpenAI’s ChatGPT remain unpublished.

In any case, this study showed that a model that was not specifically intended
for this purpose is capable of solving substantial programming sub-tasks. This
a case of morally positive unintended use; however, there are also uses that are
ethically questionable, such as using a foundational language model for solving
exercises when its use is forbidden. It will only be possible to a very limited
extent to be able to tell, by humans or machines, whether a foundational model
was used in the course of solving a programming exercise. Therefore, if program-
ming exercises are to be graded as part of coursework, either a non-networked
environment must be created, or programming has to happen based on pen and



10 J. L. Leidner and M. Reiche

paper only (perhaps the latter is less desirable than the former due to its ar-
tificial nature, but creating a functional but isolated, secured, non-networked
environment is also a challenge, not to mention the pervasiveness of networked
mobile devices).

One fundamental danger is that the use of foundational models for program-
ming will become very common (as it no doubt will), and as a result, safety
critical code will be in part originate from auto-generated code that contains
only insufficient error handling. This scenario is likely due to company’s in-
centives to increase profits and reduce cost rather than maximize quality and
minimize software defects.

9 Summary, Conclusion & Future Work

Foundational language models were pre-trained with human language material,
and in the process ingested substantial source code in various languages, too; as a
consequence, they are de facto also models of how to program, despite unreliable
ones. We found evidence of programming knowledge could be retrieved on a
broad set of tasks and programming languages, which may aid beginners and
speed up experts.

In this paper, we looked at one generic (foundational) models’ program-
ming abilities, which is a necessary but not sufficient condition for answering
the question in this paper’s title; we could answer the “ability” question over-
all affirmatively. Large pre-trained neural transformers like the one underlying
the ChatGPT application encode substantial programming and programming
language knowledge, which can be accessed using a convenient interface and in
many human languages. Whether and how foundational language models can
assist humans in the process of learning how to program, the overarching ques-
tion, further requires us to find out whether they can help learners perform and
deepen learner understanding, which should be explored in future work (see also
[10] in this volume).

Further work should explore cross-language consistency (many learners are
not English native speakers). A comparison of multiple alternative responses of
the language model used would also be interesting.8 Using a detailed prompt may
further improve the results; our experience with other transformer experiments
has shown that the time to try our various prompts, i.e. prefixing the questions
with some prose to set a context, often leads to substantial improvements. One
approach could be the collection and clustering of (abstract syntax trees of)
problem–answer pairs in terms of code in a way that mixes human-originating
answers with machine-generated answers so that students can see that a human
solution for their question may already exist, so they do not have to rely on (rel-
atively more error-prone) machine suggestions. Finally, a benchmark evaluation
that compares an approach that retrieves human forum answers from StackEx-
change with automatically synthesized answers from language models would be
interesting.

8 We are grateful to a reviewer for pointing out this idea.



LM-Assisted Learning How to Program? 11

10 Acknowledgements

We would like to thank our anonymous referees for their valuable feedback,
which helped improve the quality of this paper. The research presented in this
paper was partially funded by project VoLL-KI (BMBF/German Federal Min-
istry for Education and Research) under grants 16DHBKI089, 16DHBKI090 and
16DHBKI091, and by an award to the first author under the Hightech Agenda
Bavaria; this funding support is gratefully acknowledged. All opinions and errors
are solely the authors’ and do not necessarily reflect the opinions of any funding
agency.

A Some Sample Questions from our Dataset

Show me the C code to start and stop a precise timer for code benchmarking.
In C, how can I generate a random number between 1 and 100?
In C, how can I define a Unicode string?
In C, how can I portably access the elements of the header of a binary file

like JPG?
In portable standard ISO C++20, how do you read a *.csv file into RAM

without using a library?
In portable standard ISO C++20, how do you read a *.csv file into RAM?
In portable standard ISO C++20, how do you read a *.csv file into RAM

using the standard library or an open source library under the MIT, BSD, Apache
or LGPL licenses.?

In Python, how can I draw simple graphics using LOGO-like turtle graphics
commands?

In Python, how can I professionally render a contingency matrix that shows
the performance of a binary classifier?

In Java, how do I iterate over all keys of a hashtable?
In Java, how can I replace all matches of a regular expression?
In C, how can I create a 3-dimensional matrix of float objects that is safe

from buffer overflow errors?
In Julia, how can I plot a ROC curve?
In Julia, how can I print a contingency matrix?
In Julia, how can I define a three-dimensional matrix of floats?
In Julia, which library provides an implementation of the Viterbi algorithm

for Hidden Markov Models?
Show me the Julia code for generating a random undirected graph.
In Rust, how can I design functions to return errors systematically? In

portable standard ISO C++20, how do you read a *.csv file into RAM with-
out using a library?

In portable standard ISO C++20, how do you read a *.csv file into RAM?
In portable standard ISO C++20, how do you read a *.csv file into RAM

using the standard library or an open source library under the MIT, BSD, Apache
or LGPL licenses.?



12 J. L. Leidner and M. Reiche

In Python, how can I draw simple graphics using LOGO-like turtle graphics
commands?

In Python, how can I professionally render a contingency matrix that shows
the performance of a binary classifier?

In Java, how can I implement a singleton class?

In C, how can I create a 3-dimensional matrix of float objects that is safe
from buffer overflow errors?

In Julia, how can I view the compiled code for a function?

In Rust, how can I design functions to return errors systematically?

In Rust, how do I implement what would be a class in Java or C++?

In Rust, how do I make a struct printable?

Show me a Kotlin class for singly linked lists.

In Rust, how do I implement what would be a class in Java or C++?

In Rust, how do I make a struct printable?

In Rust, which library is best for fast trie lookup in RAM?

In Rust, which library provides efficient B-tree storage on disk?

In Kotlin, how does the minimum code of an Android mobile app look like?

In Kotlin, what is the syntax for anonymous functions?

What does this C++ code do? ...

What does this Python code do? ...

What does the following Python code do? ...

How can I test in Python whether a CUDA GPU is present?

Explain recursion.

Explain the difference between transient and persistent.

In databases, explain the ACID acronym.

Show me an SQL query that computes aggregate statistics about a table.

If I have an SQL table defined by “CREATE TABLE t(...)”, how can I insert
a new author only if he or she does not already exist?

In FORTRAN 95, how can I multiply two 2x2 matrices of integers A and B?

Can I separate a function’s declaration from its implementation in FOR-
TRAN?

Can I separate a function’s declaration from its implementation in C++?

Can I separate a function’s declaration from its implementation in Java?

Explain tail recursion to me.

Show me all bugs and deficiencies in this C code: void

nb net init(void) { nb init timers(); nb net state = mal-
loc(sizeof(nb net state)); nb net state- num conn = 0; }

What is wrong in the following Python code: ... ? Explain all errors or bugs
to me.

Show me all errors or bugs in the following C function: ... How does it look
like when it is corrected?

Show me a set of C functions for creating a (singly) linked list, inserting data
to a linked list, deleting an item from a linked list and freeing a linked list.



LM-Assisted Learning How to Program? 13

B DDL Database Schema

Table 6 shows the Data Definition Language (DDL) specification of the rela-
tional database that we use to store and distribute the dataset described in this
paper; we use SQlite, which is simple, fast and already pre-installed on many
machines. Each question gets a unique ID, the question string is paired with
an answer string (the model’s response/completion string returned), the name
of the programming language is given as a string for reasons of simplicity. The
question type refers to the earlier table, and the answer type is incorrect (0), 1
(partially correct) or 2 (correct).

Table 6. DDL Database Schema for the dataset.

CREATE TABLE que s t i on s (
id INTEGER PRIMARYKEY AUTOINCREMENT,
ques t i on VARCHARNOT NULL,
answer VARCHAR,
prg lang VARCHAR,
qtype INTEGER,
atype INTEGER

) ;



14 J. L. Leidner and M. Reiche

References

1. Barke, S., James, M.B., Polikarpova, N.: Grounded Copilot: how programmers in-
teract with code-generating models. Unpublished manuscript, ArXiv.org pre-print
server, Cornell University, New York, NY, USA (2022), https://arxiv.org/abs/
2206.15000

2. Bird, C., Ford, D., Zimmermann, T., Forsgren, N., Kalliamvakou, E., Lowdermilk,
T., Gazit, I.: Taking flight with copilot. Communications of the ACM 66(6), 56–62
(2023). https://doi.org/10.1145/3589996

3. Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Nee-
lakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A.,
Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J., Winter, C.,
Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner,
C., McCandlish, S., Radford, A., Sutskever, I., Amodei, D.: Language models are
few-shot learners. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin,
H. (eds.) Advances in Neural Information Processing Systems. vol. 33, pp. 1877–
1901. Curran (2020), https://proceedings.neurips.cc/paper files/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

4. Carbonell, J.R.: AI in CAI: An artificial-intelligence approach to computer-assisted
instruction. IEEE Transactions on Man-Machine Systems 11(4), 190–202 (1970).
https://doi.org/10.1109/TMMS.1970.299942

5. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of
deep bidirectional transformers for language understanding. In: Proceedings
of the 2019 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers). pp. 4171–4186. ACL, Minneapolis, MN, USA (2019).
https://doi.org/10.18653/v1/N19-1423

6. Imai, S.: Is GitHub Copilot a substitute for human pair-programming? an em-
pirical study. In: Proceedings of the ACM/IEEE 44th International Conference on
Software Engineering: Companion Proceedings. pp. 319–321. ICSE ’22, ACM, New
York, NY, USA (2022). https://doi.org/10.1145/3510454.3522684

7. Koulouri, T., Lauria, S., Macredie, R.D.: Teaching introductory programming: A
quantitative evaluation of different approaches. ACM Trans. Comput. Educ. 14(4),
1–28 (2015). https://doi.org/10.1145/2662412

8. Leinonen, J., Denny, P., MacNeil, S., Sarsa, S., Bernstein, S., Kim, J., Tran, A.,
Hellas, A.: Comparing code explanations created by students and large language
models (2023), unpublished manuscript, arXiv cs.CY 2304.03938, Cornell Univer-
sity pre-print server

9. MacNeil, S., Tran, A., Hellas, A., Kim, J., Sarsa, S., Denny, P., Bernstein, S.,
Leinonen, J.: Experiences from using code explanations generated by large lan-
guage models in a web software development e-book. In: Proceedings of the 54th
ACM Technical Symposium on Computer Science Education V. 1. pp. 931–937.
SIGCSE 2023, Association for Computing Machinery, New York, NY, USA (2023).
https://doi.org/10.1145/3545945.3569785

10. Reiche, M., Leidner, J.: Bridging the programming skill gap with ChatGPT: A
machine learning project with business students. In: Nowacyk et al., S. (ed.) ECAI
2023 Workshops, Kraków, Poland. CCIS, Springer Nature, Cham, Switzerland
(2023), Workshop on AI for AI Learning, in this volume

11. Robins, A., Rountree, J., Rountree, N.: Learning and teaching programming: A
review and discussion. Computer Science Education 13(2), 137–172 (2003)

https://arxiv.org/abs/2206.15000
https://arxiv.org/abs/2206.15000
https://doi.org/10.1145/3589996
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.1109/TMMS.1970.299942
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1145/3510454.3522684
https://doi.org/10.1145/2662412
https://doi.org/10.1145/3545945.3569785


LM-Assisted Learning How to Program? 15

12. Roumeliotis, K.I., Tselikas, N.D.: ChatGPT and Open-AI models: A preliminary
review. Future Internet 15(6) (2023). https://doi.org/10.3390/fi15060192, https:
//www.mdpi.com/1999-5903/15/6/192

13. Sanderson, K.: GPT-4 is here: what scientists think. Nature 615(7954), 773 (2023)
14. Sarsa, S., Denny, P., Hellas, A., Leinonen, J.: Automatic generation of program-

ming exercises and code explanations using large language models. In: Proceedings
of the 2022 ACM Conference on International Computing Education Research -
Volume 1. pp. 27–43. ICER 2022, Association for Computing Machinery, New York,
NY, USA (2022). https://doi.org/10.1145/3501385.3543957

15. Su, Y., Wan, C., Sethi, U., Lu, S., Musuvathi, M., Nath, S.: HotGPT: How to
make software documentation more useful with a large language model? In: Pro-
ceedings of the 19th Workshop on Hot Topics in Operating Systems. pp. 87–93.
HOTOS ’23, Association for Computing Machinery, New York, NY, USA (2023).
https://doi.org/10.1145/3593856.3595910

16. Surameery, N.M.S., Shakor, M.Y.: Use ChatGPT to solve programming bugs. In-
ternational Journal of Information Technology & Computer Engineering 3(01),
17–22 (2023). https://doi.org/10.55529/ijitc.31.17.22, http://journal.hmjournals.
com/index.php/IJITC/article/view/1679

17. Vaithilingam, P., Zhang, T., Glassman, E.: Expectation vs. experience: evaluating
the usability of code generation tools powered by large language models. In: Ex-
tended Abstracts of the 2022 Conference on Human Factors in Computing Systems.
pp. 1–7 (2022), https://dl.acm.org/doi/10.1145/3491101.3519665

18. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
L., Polosukhin, I.: Attention is all you need. In: Guyon, I., Luxburg, U.V., Bengio,
S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in
Neural Information Processing Systems 30 – 31st Annual Conference on Neural
Information Processing Systems, Long Beach, CA, December 4-9, 2017. pp. 5999–
6010. (NIPS 2017), Curran Associates (2018)

https://doi.org/10.3390/fi15060192
https://www.mdpi.com/1999-5903/15/6/192
https://www.mdpi.com/1999-5903/15/6/192
https://doi.org/10.1145/3501385.3543957
https://doi.org/10.1145/3593856.3595910
https://doi.org/10.55529/ijitc.31.17.22
http://journal.hmjournals.com/index.php/IJITC/article/view/1679
http://journal.hmjournals.com/index.php/IJITC/article/view/1679
https://dl.acm.org/doi/10.1145/3491101.3519665

	Language-Model Assisted Learning How to Program?

