
Model-Based-Diagnosis for Assistance in
Programming Exercises⋆

Moritz Bayerkuhnlein1[0000−0002−0919−9947]

and Diedrich Wolter1[0000−0001−9185−0147]

University of Bamberg, An der Weberei 5, 96047 Bamberg, Germany
firstname.lastname@uni-bamberg.de

Abstract. Implementing AI methods can be an effective way to under-
stand their inner workings, in particular when learners have to locate
bugs. However, programming tasks are time consuming and can be ex-
tremely challenging for students. In order to provide assistance, code
evaluation platforms have been developed that give immediate feedback
in the form of discrepancies between expected and actual output for test
cases. While such tests clearly indicate wether or not an implementa-
tion is faulty, they do not assist learners in locating the fault in their
implementation. We propose to diagnose solution attempts, explaining
potential faults with respect to abstract behavior. By framing program-
ming tasks as functional models, we can diagnose the underlying concepts
of a task and provide feedback. In this paper we focus on abstract data
types as a basis for AI algorithms. The diagnosis method described in
this paper produces an explanation of a fault in the form of a descrip-
tion based on a reconstruction of hidden program states. Applying the
method to student submissions in a programming class shows that the
proposed method can effectively identify and locate faults.

Keywords: Model-Based Diagnosis · Fault Localization · Intelligent Tu-
tor System

1 Introduction

The classic AI textbook “Paradigms of AI Programming” by Peter Norvig [16]
prominently quotes Alan Perlis stating that learners can only be certain to fully
understand an algorithm if they are able to implement – hence also debug – it.
We consider programming exercises to be a crucial part in education, helping
students to understand and demystify the inner workings of an AI method.
Programming tasks operate on multiple levels of abstraction, from the concrete
syntax of the programming language to the abstract concepts of the task, all
involving a number of mental models [13, 18].

For algorithms that operate on these abstract representations, debugging can
be difficult for learners since a faulty behavior cannot easily be traced back to a

⋆ This work has been carried out in context of the VoLL-KI project (grant
16DHKBI091), funded by Bundesministeriums für Bildung und Forschung (BMBF)

Diedrich Wolter
working paper
final paper will appear in Springer Proceedings of ECAI Workshops

2 Bayerkuhnlein & Wolter

location in the source code. Multiple program components interact in a complex
way and faulty intermediate results may only occur under certain conditions and
remain hidden in internal program states. While experienced programmers are
able to craft decisive test cases that test special cases, students need to learn
about such cases first.

Immediate feedback and automated assistance enables novices to learn from
a programming task as they face, without overly indulging in handholding the
student. This requires automated means to provide feedback for submitted solu-
tion attempts, for example using evaluation platforms that run automated tests
[10]. Such platforms present an assistance systems to students while developing a
solution attempt. Although feedback given in the form of discrepancies between
expected and actual output has already been found helpful [11], such approach
only assesses correctness of a submitted solution at whole and does not differen-
tiate the abstract representations underlying the task. In other words, existing
tools only state whether or not an implementation is faulty. They do not ex-
plain why, nor do they provide hints to the learner where the bug is. We are
motivated – also by feedback from our students that suffered interpreting test
feedback from existing tools – to develop means for automated feedback that is
capable of explaining program faults more intuitively.

We propose to relate faults identified in programming tasks to explicit func-
tional models by means of diagnosis and explicit reconstruction of the faulty
system’s internal state, providing feedback on level that is close to how under-
lying concepts are taught. Our approach builds on the common infrastructure
of automated test cases, but extends it with model-based diagnosis. This means
we do not inspect the actual source code but treat it as a black box, allow-
ing the method to be applied independent of the programming language used.
To achieve our aim we propose a model of functional circuits that is related
to classical diagnosis domains like electrical circuits. In this paper we consider
implementation of Abstract Data Types (ADTs) (e.g., stack, tree, etc.) which
underly AI methods (e.g., for managing the fringe in search methods). ADTs are
challenging to debug for novices since ADTs are based on information hiding,
concealing the internal state.

Figure 1 gives an example of the feedback generated by the method described
in this paper for a faulty implementation. In the corresponding programming
exercise, a binary search tree had to be implemented. In Section 2 we describe
how model-based diagnosis can be applied and relate the approach to other
techniques for fault localization. Based on a logic model, we apply diagnosis to
programs (Section 3) and with the help of computational logic tools we then
determine a model (Section 4) of the faulty behavior that reconstructs hidden
states of the program to explain the fault (Section 5). As can be seen in Figure 1,
our system produces hypotheses of possible faults, aiming to direct students to
bugs in the code. Both, textual and graphical presentations can be provided.
In Section 5.1 we give first results regarding the effectiveness of the proposed
method we obtained for student submissions in an introduction course.

Model-Based-Diagnosis for Assistance in Programming Exercises 3

1 public void addRec(int key , Node current){

2 if(root.getKey () < current.getKey ()){

3 if(current.getLeft () != null){

4 addRec(key ,current.getLeft ());

5 }else{

6 current.setLeft(new Node(key));

7 }

8 }else if(current.getRight () != null){ //...

3

2

1 i nor der ()

pr eor der () 2, 1, 3

2, 3, 1
!

!
2

3
2

1

add(1)
!

3

 AI-AuD-B SS23 Assignment 7

Assignment 7 Collapse context

Your answer passed the tests! Your score is 90.91%. [Submission #64ba35ba947199ac62d39452]

Your score: 90.9090909090909% Great! Now try to make your code as clean as possible!

×

Question 1: BinarySearchTree

× Results:

[Hypothesis 1] add-method(s) are faulty, we suspect for example:

example: calling add(1) on tree(nil,2,tree(nil,3,nil)) may have produced tree(nil,2,tree(tree(nil,1,nil),3,nil))

[Hypothesis 2] inorder and preorder-method(s) are faulty, we suspect for example:

example: calling inorder() on tree(tree(nil,1,nil),2,tree(nil,3,nil)) may have produced [2,1,3]

example: calling preorder() on tree(tree(nil,1,nil),2,tree(nil,3,nil)) may have produced [2,3,1]

×

Feedback

Here are some hypothesis of what might be causing test failures. They were automatically derived by observing the behaviour

of your code.

Was this feedback helpful? Yes No

package a7;

import java.util.ArrayDeque;
import java.util.LinkedList;
import java.util.List;
import java.util.Queue;

/**
 * This class implements a binary search tree. It uses the {@link Node}
 * class for storing the elements of the tree.
 */
public class BinarySearchTree {

 private Node root;

 /**
 * Adds a new node with the given key to the binary search tree. Remember to
 * store new nodes at their proper position.
 *
 * @param key The integer value of the new node.
 */

 public void add(int key) {

 if(root == null){
 root = new Node(key);
 }else{
 addRec(key,root);
 }
 }

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Fig. 1: Excerpt from faulty student code of a binary search tree which always
compares the current node’s key with the root key, no the provided key (line 2).
The resulting diagnosis as text with additional illustration is shown below.

2 Model-Based Diagnosis and Debugging

In this section we discuss approaches to fault localization and show how the
problem of localizing faults within a system can be posed as a diagnosis problem,
using reasoning from the first principles [17, 9], that is, model-based diagnosis
(MBD). Following Reiter [17], diagnosis employs a structural and a behavioral
model of a system.

Definition 1 (Diagnosis System). A diagnosis system consists of (sd,comp),
where comp is a set of components that reside within the system, and the descrip-
tion of the system sd defines the behavior of the components in their interaction
based on their structure.

A functionally correct system consists of components that exhibit the behavior
of sd. If the system is observed to behave abnormally, i.e. it produces unexpected
output, then diagnosis traces back this abnormality to one or more potentially
abnormal components {ab(c1), ...,ab(cn)}. We define all observable inputs and
outputs on terminals of a system as a finite set obs.

In the consistency-based approach to model-based diagnosis, a component c
is admitted to show arbitrary behavior regardless of the specification in sd only
if it is declared by ab(c) to act abnormally [17]. Diagnosis is thus the task of

4 Bayerkuhnlein & Wolter

determining minimal sets of components such that their conjectured abnormality
explains all observations.

Definition 2 (Diagnosis). For a system (sd,comp) and obs formalized as
logical sentences, a diagnosis is a set ∆ ⊆ comp iff sd ∪ obs ∪ {ab(c)|c ∈
∆} ∪ {¬ab(c)|c ∈ (comp \∆)} is consistent. A diagnosis ∆ is minimal if there
is no alternative diagnosis ∆′ ⊂ ∆.

2.1 Model-Based Software Debugging

Applying MBD to debugging has been done in the form of Model-Based Soft-
ware Debugging (MBSD) initially in Logic Programming [7], but has since been
adapted to functional [20] and object-oriented paradigms [23]. MBSD derives
a system model directly from the source code and the programming language
semantics. Statements and expressions constitute set comp, and, in contrast
to MBD, sd does not provide the specification; rather, it mirrors the faulty
implementation. Similarly, the role of obs is flipped, as they now represent the
expected output according to a test oracle [21]. MBSD is aimed at an application
for experienced programmers [21]. It is generally assumed that the experienced
programmer knows what they are doing, bugs are expected to be infrequent and
are most likely repairable by slight modifications [21]. In the context of a learning
support system, de Barros et al. [3] use structural abstraction and a hierarchi-
cal model-based approach to reason about specified code patterns as abstract
components, with the goal of establishing a better dialog when communicating
errors to students in terms of their problem solving strategies. A challenge when
referring to source code (aside from adaption efforts to specific programming
languages) lies in the fact that diverse implementations can produce the same
behavior using dramatically different techniques.

2.2 Fault Localization

Lately, even machine learning methods have been applied to fault localization
and automated repair of code [2]. By contrast, classical models are based on
formal specification and testing against a formal specification, hence ensuring
correctness of the output. While well-designed complex tests can be very effective
to verify correctness of a program, they provide no direct pointers to bugs in
the code. Moreover, it requires much care to design a minimal set of test cases
that is able to detect all reasonable faults. It is therefore attractive to run many
tests in an exhaustive manner. As a downside of exhaustive testing, test output
may be overwhelming. A further challenge faced in testing is that a single fault
can cause multiple tests to fail. Several methods have been proposed to compile
test failures into a ranked set of fault candidates, a prominent example being
the family of spectrum-based fault analysis [19] which has also been applied to
the challenging task of multiple fault localization [1]. The idea of spectrum-based
based methods is to compute a metric that derives the likelihood of a component
being faulty from the number of faulty tests the component was used (along other

Model-Based-Diagnosis for Assistance in Programming Exercises 5

M1

M2

M3

A1

A2

F=7

G=10

A=1

E=2

X

Z

Y
C=1

B=3

D=2

M3 A2

X = 1 X = 1
Y = 6 Y = 6
Z = 4 Z = 2

M2, A1 M1,M2

X = 1 X = −1
Y = 8 Y = 8
Z = 2 Z = 2

Fig. 2: Functional circuit on a range of [0,15] (4-bit), diagnosed component sets
and their context as corresponding variable values.

components) in relation to participation in passed tests. While computing such
metrics can be done efficiently, they only provide an estimate and rely on an
appropriate balancing of the test cases. In contrast to such heuristic methods,
model-based diagnosis has the advantage of giving correct results and is able to
provide justification in form of a logic model.

3 Modelfinding for Diagnosis

The presence of a fault introduces unknown behavior into a system, which man-
ifests itself as symptoms. Diagnosing involves identifying and isolating a cause
from the observed symptoms. This form of reasoning is known as abductive rea-
soning. Abductive diagnosis, as defined by Console in [8], uses strong fault models
that explicitly model faulty system behavior. By restricting the outcome to a
set of possible causes that act as justifications, stronger fault models reduce the
number of candidate diagnoses. However, additional modelling effort is required.

Instead, and unlike abductive diagnosis, our approach reconstructs the sys-
tem state from the observations made. Related approaches to model-based diag-
nosis from the field of constraint programming have been termed constructive ab-
duction [14]. To illustrate the benefit of constructive abduction over consistency-
based diagnosis, consider a classic example of a circuit consisting of multiplier
components {M1,M2,M3} and adder components {A1,A2}, as shown in Fig-
ure 2, where the components perform operations on 4-bit integer values from 0
to 15. Ports A to E are the inputs and ports F, G are the observable system out-
puts. The system thus computes F = (A ·C)+(B ·D) and G = (B ·D)+(C ·E).
The inputs shown in Figure 2 indicate a discrepancy, since G = 10 differs from
the expected value (3 · 2) + (1 · 2) = 8.

The diagnoses generated by the consistency-based approach in accordance
with Definition 2 are ∆ = {{M3}, {A2}, {M2,A1}, {M1,M2}}, i.e. four possible
minimal sets of abnormal components. If we consider the diagnostic system as a
system of equations, and the abnormal components output X, Y as free variables,
we obtain the equations X + Y = 7 and Y + 2 = 10. We thus have X + 8 = 7,
which has no solution over the domain of non-negative 4-bit integers, but all
other solutions actually provide a justification based on the value assumed to be

6 Bayerkuhnlein & Wolter

the output of an abnormal component. In conclusion, diagnosis {M1,M2} is not
a feasible explanation for the observed error. As a side product, we also obtain
values that support a diagnosis, essentially determining a satisfying model or
context C such that

C |= SD ∪OBS ∪ {ab(c) | c ∈ ∆} (1)

The method can be formulated as a Constraint Satisfaction Problem (CSP),
where an assignment of variables is sought from a finite domain, in our case
the context C. A practical method can easily be obtained by first-order model
finding, using answer set programming (ASP) or SMT solvers.1

To find the minimal diagnosis, we use an incremental approach, directly spec-
ifying the number of abnormal operations or components we want to diagnose,
and incrementally increasing the value; the consistency check by the solver can
only consider models that satisfy the exact number of abnormal operations [22].

Once a constellation of abnormal operations is found, the framework excludes
it from further diagnosis, so that no super sets are generated. For the scope of
this paper we focus on the modelling aspects as the main contribution.

4 Model-Based Diagnosis of Programming Exercises

Different implementations can achieve the same behavior using a variety of un-
derlying mechanisms, yet the behavior follows a common specification. In our
work we assume that a specification of the ADT to be implemented is given as
an algebraic specification.

Definition 3 (Algebraic Specification). An algebraic specification (AS) is a
tuple (Σ,E) where signature Σ has a finite set of sorts S (i.e. type names) and
operations of structure op : s1 × ...× sn → s | si ∈ S. Semantics of op is defined
by equations, as a set of axioms E.

A natural level of abstraction for components in the sense of a diagnostic
system is then the level of individual methods defined by the ADT and in use
in a sequence of operation calls. During diagnosis, we model each operation call
as a single component in order to differentiate between different conditions in
which a component is in use. For example, a stack implementation is composed
of components that implement initialisation, push, pop, etc. Two successive
push operations are modelled as two different components push1, push2. Com-
ponent behavior is defined as input and output pairs or functions that pass
values, but not all values are observable. For example, the result of a push
operation modifies the stack and usually does not return a directly observable
value. Consequently, values appearing at the terminals of intermediate compo-
nents must be reconstructed during diagnostic reasoning. We say that if the

1 For experiments, specifications are formalised in the interactive theorem prover Is-
abelle/HOL [15] using its integrated model finding capabilities [5] to perform the
constructive abduction.

Model-Based-Diagnosis for Assistance in Programming Exercises 7

output produced by a component c differs from what is specified in a given AS,
it behaves abnormally, written ab(c). For observable outputs, abnormality can
be inferred from observations. For unobservable components, abnormality can
only be inferred by reasoning about their behavior within a network of com-
ponents as a whole. Abnormality of a component is treated as a justification
for any output produced by the component, both in conflict with and in ac-
cordance with the specification. Since components of the same functional type,
e.g. pushi, i = 1, 2, . . ., are based on a single implementation, we introduce a
rule that propagates an inferred abnormality to all components of that type:
ab(c) ∧ type(c, opi) ∧ type(c′, opi) → ab(c′).

The goal of diagnosis is to identify (i) a set of individually faulty components,
or (ii) a faulty mechanic that may be spread across multiple components and
cannot be attributed to a single component. To this end, we use compound
statements of the form a, b ∈ comp: a∧b to express that either there are problems
in both the mechanics implementing a and b, or there is a common mechanic that
is broken by both, including side effects of one that affect the other. Analogously,
a∨ b denotes an alternative diagnosis that either a or b is abnormal, and occurs
whenever some uncertainty remains from the observations made.

4.1 Algebraic Specification as Diagnosis System

Given an AS (Σ,E), we construct test cases by arbitrarily composing the meth-
ods of the ADT, i.e. the set of non-primitive functions occurring in op and
determining the expected results according to E, for an example see Figure 3.
Each test case is then applied to the code and fully executed to be diagnosed,
collecting the observable outputs. Each test case is fully executed, thus the actual

Sign in

Untitled Document (1) oad Clone Download Share

type_synonym S = "(Stack × nat)"
definition create:: "nat ⇒ S" ("create'(_')") where "create N ≡ (empty,N)"
definition push :: "S ⇒ E ⇒ S" ("push'(_,_')") where "push(P,E) ≡ (E on fst P,snd P)"
axiomatization
 size :: "S ⇒ nat" ("size'(_')") and
 pop :: "S ⇒ S × E" ("pop'(_')") and
 isEmpty :: "S ⇒ bool" ("isEmpty'(_')") and
 isFull :: "S ⇒ bool" ("isFull'(_')") and
 capacity :: "S ⇒ nat" ("capacity'(_')")
where
 AA: "capacity(S)<size(S) ⟶ err(S)" and AB: "err (pop(create(N)))" and
 A1: "fst pop(push(s,e)) = s" and A2: "snd pop(push(s,e)) = e" and
 A3: "isEmpty(push(s,e)) = False" and A4: "isEmpty(create(N)) = True" and
 A5: "size(create(N)) = 0" and A6: "size(push(s,e)) = size(s)+1 " and
 A7: "capacity(create(N)) = N" and A8: "capacity(push(s,e)) = capacity(s)" and
 A9: "isFull(S) = (size(S)=capacity(S))"

Normal

Full Screen

New Page

Documents

Feedback

Contact Us

Privacy Policy

Terms of Use

Change Log

Applications

Fig. 3: Specification of capacity bounded abstract datatype stack formalized in
Isabelle/HOL using definitions on pairs and inductive datatypes for constructors
and axiomatization to specify the remaining behavior

8 Bayerkuhnlein & Wolter

output can deviate on multiple occasions from the expected output which aids
identifying aftereffects of faults. The method calls occurring in the tests then con-
stitute the set of components compAS of the diagnosis system (compAS , sdAS).
Behavior representation sdAS and observations obsAS is given by test cases.
A Diagnosis ∆ of sdAS is then: sdAS ∪ obs ∪ {ab(c)|c ∈ ∆} ∪ {¬ab(c)|c ∈
compAS \∆}

As opposed to primitive datatypes such as boolean and integer, ADTs per-
form information hiding. There is usually not even a method to test for equality.
So we can only check the tests on the basis of observable sorts. This has impli-
cations for the representation of values propagated through the components of a
diagnostic system, since instead checking instances of non-observable sorts (i.e.
ADTs) it is only possible to check whether they are observational equal. That
is, instances cannot be distinguished by “experiments”, as in any sequence of
operations that results in an observable sort [4].

As a means of transferring information between the components of compAS ,
we choose to represent values of unobservable sorts as first-order ground terms
using the constructors of the ADT (e.g. node(Key,LeftChild, rightChild) for
a binary tree). Through constructive abduction we effectively reconstruct values
for the purpose of justification whenever a feasible diagnosis is found. Using this
representation, we anchor any justification we make to the structure and state of
the data type. However, this assumes that the observations made can be deter-
ministically reconstructed while relying only on this simplified representation.
Whenever the value represented here is the product of a faulty component, we
will refer to it as a corrupt value or state.

Example 1. Let component popi represent the operation pop : stack → stack ×
char . Provided with input term t1 = push(create(3), a), i.e. a stack of size 3
containing only literal ‘a’, the output of popi, namely pop(push(create(3), a)),
can be rewritten as create(3) using the axiom pop(push(s, e)) = (s, e). Assum-
ing popi to act normally, one can only infer from the element e returned that
the state of the data structure before calling popi is consistent with t1, not that
it must be identical to t1.

5 Inferring Hidden Values from Testcases

Identifying faulty components within a system requires tracing symptoms through
the propagation of the components. A key part of this propagation and recon-
struction of the state of the system is determined by how we structure and relate
the observations, forming a structural model. The model of a physical device is
defined by the actual physical connections between each component. This is not
necessarily the case for a more abstract system. Connections between calls to the
datatype are the datatype values or states and any other value passed between
calls. We consider components as the operation calls, where the implementing
operation is the type of that component. Values, including the representation of
ADT states, are passed from one operation call to the next, usually terminating
in an observing operation that returns a primitive value.

Model-Based-Diagnosis for Assistance in Programming Exercises 9

If we want to effectively describe and reason about a failure, information
hiding must be overcome by reconstructing states. A call to a component flagged
as abnormal means that no guarantees can be made about the output of that
operation. This induces the possibly of corrupted states through the observed
context, i.e. the sequence of calls following the values output by the observers,
resulting in a context with (at least) a behaviorally equivalent representation [12].
As shown in Figure 4 (right), we structure the connection model in a branching
fashion in order to relate the information. Where a path through the diagram
represents a test, tests share the same history and therefore the same state.
Whenever a test sequence branches from another, the values present on both
branches must be identical. Following the notation introduced in [6], we formalize
these branches using shared variables, so that any constraint imposed on one
variable affects all its branches.

Example 2. Expression 2 represents two test sequences that overlap until op3,
where one test, represented by the shared variable b, observes and terminates
with f , while the other test continues to manipulate the state to c, d and e.

∃ a b c d e f.create1(3, a) ∧ push2(a, 1,b) ∧ push3(b, 2, c) ∧ pop3(b, f, 1)

∧ pop4(c, d, 2) ∧ pop5(d, e, 2) (2)

Therefore, when generating tests for an implementation, we require a certain
amount of overlap in the test cases so that operations operate on the same state
according to the structural model. In the case of abstract data type implementa-
tions and other API-like specifications, tests can be generated using for example
a breadth-first search.

5.1 Constructing Diagnosis

From the consistency-based definition 2, a regular diagnosis result identifies the
bug by providing a set of components {c | c ∈ COMP ∧ ab(c)} that need to be
repaired. In our case, this set includes a set of operations from the specification
that must deviate from the specification. An operation may implement multiple
cases, or have behavior that depends on a particular range of values, in which
case it is helpful to contextualize the diagnosis. As mentioned in section 3 using
the reconstructed values, a diagnosis can also be justified when faced with a
discrepancy based on the inferred input and output values.

Figure 4 (left) illustrates Example 2 as a component connection model. On an
operation-call level, i.e. distinguishing between the individual calls during diag-
nosis, we obtain the (4) minimal diagnoses: The minimal diagnoses are searched
for incrementally following [22] by allowing only a fixed number of abnormal
components.
(i) ab(pop5), justified by d = push(create(3), 1) but returning 2. (ii) ab(pop4),
justified by c = push(push(create(3), 1), 2) producing d = push(, 2)2. (iii)
ab(push3), justified by b = push(create(3), 1) but returning c = push(push(, 2), 2).

2 Wildcard () denotes assignment where no context constrains the value

10 Bayerkuhnlein & Wolter

add(3)

add(1)

add(2)

delete(1)

delete(1)

add(5)

add(2)obs*

obs*

obs*

obs*

obs*

obs*

obs*

create1 push2 push3

pop3

pop4 pop53

a b 1 ✓c d

1
2 2 ✓

2 ✗

Fig. 4: Visual Representation of test cases as circuits. Binary Search Tree test
cases represented as a branching functional circuit (left). Sequence of stack op-
erations annotated with observations (right).

(iv) ab(push2), justified by a = create(3) but producing b = push(, 2) and
ab(pop3) justified by b = push(, 2) but returning 1.

Qualitatively, these justifications can now be scrutinized to assess their plau-
sibility. For example, just by aggregating and looking at the diagnosis operation
by operation, as described in Section 4, we can check whether reconstructed
values still induce deterministic functions from their inputs and outputs.

In the following, we demonstrate the quality of diagnosis that the approach
can provide. For demonstration, we modeled a programming task to implement
an ADT stack and implemented the approach. We asked students in a first-
year introductory course on algorithms and data structures at our university to
implement the stack based on an array in Java at the beginning of the semester
as part of their homework. The submitted code was stored and evaluated using
the INGInious platform [10]. 74 students submitted multiple attempts to solve
their homework. In total, 267 submissions were recorded, of which 49 had solution
errors in their stack implementation, detected by manually written test cases and
the INGInious platform. We demonstrate the use of the approach by localiszing
the incorrect behavior of the implementations.

Table 1 shows the types of erroneous implementations that we identified by
manually scanning all submissions. The table also shows the corresponding di-
agnosis found by the proposed method, based on testing against a stack using
an exhaustive test suite. Note that the correctness of a diagnosis here depends
on the coverage of the test suite. The diagnosis found for the faulty implementa-
tions is correct, i.e. the diagnosis covers the actual faults in the implementation,
although there are false positives among the conjunctions. However, these can
be checked using the reconstructed values. For example, if there are several pos-
sible values for a variable, the justification is not deterministic and therefore not
plausible.

We can use a reduced test set to get good, potentially equivalent diagnoses.
As shown in the results obtained for a binary tree datatype implementation of
Table 1. Where the implementations have only been tested on the circuit shown
in Figure 4 (left). However, this does affect the ability to effectively reconstruct
values as the presence of the constraint decreases. The ground-truths are found
by the diagnosis and here listed first.

Model-Based-Diagnosis for Assistance in Programming Exercises 11

Table 1: Observed errors in the student submission for an array-based stack
data type and binary search tree. For all error classes, the diagnosis covered
the actual errors in the code. (*)-Asterisk marks conjunctions that suggested an
implausible justification based on non-determinism.

ID Description Diagnosis ∆

ar1: Array not initialized create ∨ push
ar2: Array indexing starts at 1 push ∨ (create ∧ full)

ie1: empty is inverted empty ∨ (create ∧ push ∧ pop)*

if1: full is inverted full ∨ (create ∧ push ∧ pop)*

ieif1: both empty and full are inverted (empty ∧ full) ∨ (create ∧ push ∧ pop)*

po1: pop on empty returns constant pop ∨ (create ∧ push ∧ empty)*

po2: pop always returns constant pop

po3: pop only observes pop ∨ (push ∧ full)*

pu1: push on full no exception push ∨ (pop ∧ empty ∧ full)*

pu2: push on full overwrites top element push ∨ (pop ∧ empty ∧ full)*

lst1 tree is list structured add ∨ (find ∧ inorder)
dl1 delete has no effect delete
dl2 delete removes subtree delete ∨ (add ∧ find ∧ inorder)
ip1 in- implements postorder inorder ∨ (add ∧ find)
co1 exception if not contained find

Conclusion and Future Work

As an effort to provide more informative automated feedback for student pro-
gramming tasks, we design a computational logic model in an adaption of model-
based diagnosis. The model presented here is able to isolate faults and reason
explicitly about the internal state of the faulty system by means of construc-
tive abduction. The approach bridges automated testing to abstract reasoning,
allowing intuitive explanations of a fault.

In future work we want to investigate diagnosis of complex AI algorithms.
This poses challenges with respect to efficiency of the diagnosis and with respect
to handling components that influence the control flow of a program. Last but
not least, we plan to conduct a user study to learn about most suitable levels of
abstractions when communicating a fault to the student.

References

1. Abreu, R., Zoeteweij, P., Gemund, A.J.V.: Spectrum-based multiple fault local-
ization. In: Proceedings of IEEE/ACM International Conference on Automated
Software Engineering. pp. 88–99. IEEE (2009)

2. Allamanis, M., Jackson-Flux, H., Brockschmidt, M.: Self-supervised bug detection
and repair. In: Proceedings of 35th Conference on Neural Information Processing
Systems (NeurIPS 2021) (2021)

3. de Barros, L.N., Pinheiro, W.R., Delgado, K.V.: Learning to program using hier-
archical model-based debugging. Applied Intelligence 43(3), 544–563 (2015)

12 Bayerkuhnlein & Wolter

4. Bidoit, M., Hennicker, R., Wirsing, M.: Behavioural and abstractor specifications.
Science of Computer Programming 25(2-3), 149–186 (1995)

5. Blanchette, J.C., Nipkow, T.: Nitpick: A counterexample generator for higher-order
logic based on a relational model finder. In: Interactive Theorem Proving: First
International Conference, ITP 2010, Edinburgh, UK, July 11-14, 2010. Proceedings
1. pp. 131–146. Springer (2010)

6. Camilleri, A., Gordon, M., Melham, T.: Hardware verification using higher-order
logic. Tech. rep., University of Cambridge, Computer Laboratory (1986)

7. Console, L., Friedrich, G., Dupré, D.T.: Model-based diagnosis meets error diagno-
sis in logic programs. In: International Workshop on Automated and Algorithmic
Debugging. pp. 85–87. Springer (1993)

8. Console, L., Torasso, P.: A spectrum of logical definitions of model-based diagnosis
1. Computational intelligence 7(3), 133–141 (1991)

9. Davis, R.: Diagnostic reasoning based on structure and behavior. Artificial intelli-
gence 24(1-3), 347–410 (1984)

10. Derval, G., Gego, A., Reinbold, P., Frantzen, B., Van Roy, P.: Automatic grad-
ing of programming exercises in a mooc using the inginious platform. European
Stakeholder Summit on experiences and best practices in and around MOOCs
(EMOOCS’15) pp. 86–91 (2015)

11. Hao, Q., Smith IV, D.H., Ding, L., Ko, A., Ottaway, C., Wilson, J., Arakawa, K.H.,
Turcan, A., Poehlman, T., Greer, T.: Towards understanding the effective design
of automated formative feedback for programming assignments. Computer Science
Education 32(1), 105–127 (2022)

12. Hennicker, R.: Context induction: a proof principle for behavioural abstractions
and algebraic implementations. Formal Aspects of Computing 3, 326–345 (1991)

13. Johnson-Laird, P.N.: Mental models. MIT Press (1989)
14. Ligeza, A.: Constraint programming for constructive abduction. a case study in

diagnostic model-based reasoning. In: Advanced Solutions in Diagnostics and Fault
Tolerant Control. pp. 94–105. Springer (2018)

15. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: a proof assistant for higher-
order logic, vol. 2283. Springer Science & Business Media (2002)

16. Norvig, P.: Paradigms of AI Programming: Case Studies in Common Lisp. Morgan
Kaufmann (1992)

17. Reiter, R.: A theory of diagnosis from first principles. Artificial intelligence 32(1),
57–95 (1987)

18. Robins, A., Rountree, J., Rountree, N.: Learning and teaching programming: A
review and discussion. Computer science education 13(2), 137–172 (2003)

19. de Souza, H.A., Chaim, M.L., Kon, F.: Spectrum-based software fault localization:
A survey of techniques, advances, and challenges. Tech. rep., arXiv:1607.04347
(2016)

20. Stumptner, M., Wotawa, F.: Debugging functional programs. In: IJCAI. vol. 99,
pp. 1074–1079. Citeseer (1999)

21. Wieland, D.: Model-based Debugging of Java Programs using Dependencies. Ph.D.
thesis, Technische Universität Wien (2001)

22. Wotawa, F., Kaufmann, D.: Model-based reasoning using answer set programming.
Applied Intelligence pp. 1–19 (2022)

23. Wotawa, F., Stumptner, M., Mayer, W.: Model-based debugging or how to diag-
nose programs automatically. In: International Conference on Industrial, Engineer-
ing and Other Applications of Applied Intelligent Systems. pp. 746–757. Springer
(2002)

